, Volume 25, Issue 9, pp 4381–4392 | Cite as

Sol–gel synthesis of manganese oxide supercapacitor from manganese recycled from spent Zn–MnO2 batteries using organic acid as a leaching agent

  • P. V. M. Dixini
  • B. B. Carvalho
  • G. R. Gonçalves
  • V. C. B. Pegoretti
  • M. B. J. G. FreitasEmail author
Original Paper


In this study, manganese recycled from cathodes of spent Zn–MnO2 batteries was used for the sol–gel synthesis of a manganese oxide pseudocapacitor with high specific capacitance. The recycled material is a mixture of α-MnO2, Mn3O4, and ZnMn2O4, according to X-ray diffraction, energy dispersive X-ray, Raman spectra, and chemical analysis. Manganese oxide has smaller particle size when synthesized at 700 °C for 3 h (M1) than when synthesized at 700 °C for 12 h (M2), as evidenced by scanning electron microscopy and transmission energy microscopy. The specific capacitances of M1 and M2 after 1000 cyclic voltammetry cycles at 50 mV s−1 are 350 F g−1 and 125 F g−1, respectively. After 500 galvanostatic cycles at 1.0 A g−1, M1 and M2 exhibit specific capacitances of 275 F g−1 and 150 F g−1, respectively. Electrochemical impedance spectra revealed that M1 has lower charge transfer resistance and diffusion resistance than M2.


Sol–gel synthesis Manganese oxide Pseudocapacitor Recycling Alkaline batteries 



The authors thank CAPES, NCQP-UFES, FAPES, and CNPq for their financial support; IFES/Aracruz and LPT/LMC for the XRD, SEM/EDX, and BET analyses; and LUCCAR for the TEM analysis.

Supplementary material

11581_2019_2995_MOESM1_ESM.pdf (106 kb)
ESM 1 (PDF 106 kb)


  1. 1.
    Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Carvalho BB, Pegoretti VCB, Celante VG, Dixini PVM, Gastelois PL, Macedo WAA, Freitas MBJG (2017) Effect of temperature on the electrochemical synthesis of MnO2 recycled from spent Zn–MnO2 alkaline batteries and application of recycled MnO2 as electrochemical pseudocapacitors. Mater Chem Phys 196:126–136CrossRefGoogle Scholar
  3. 3.
    ABRELPE (2017) Panorama dos Resíduos Sólidos no Brasil. In: Assoc. Bras. Empres. Limp. Pública e Resíduos Especiais. Accessed 19 Mar 2018
  4. 4.
    Comission E (2018) Batteries & accumulators. Accessed 5 Oct 2018
  5. 5.
    Espinosa DCR, Bernardes AM, Tenório JAS (2004) An overview on the current processes for the recycling of batteries. J Power Sources 135:311–319CrossRefGoogle Scholar
  6. 6.
    Bernardes AM, Espinosa DCR, Tenório JAS (2004) Recycling of batteries: a review of current processes and technologies. J Power Sources 130:291–298CrossRefGoogle Scholar
  7. 7.
    Sayilgan E, Kukrer T, Civelekoglu G, Ferella F, Akcil A, Veglio F, Kitis M (2009) A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. Hydrometallurgy 97:158–166CrossRefGoogle Scholar
  8. 8.
    Dixini PVM, Celante VG, Lelis MFF, Freitas MBJG (2014) Recycling of the anode from spent Ni-MH batteries for synthesis of the lanthanide oxysulfide/oxysulfate compounds used in an oxygen storage and release system. J Power Sources 260:163–168CrossRefGoogle Scholar
  9. 9.
    Dixini PVM, Pegoretti VCB, Celante VG, Betim FS, Freitas MBJG (2017) Electrodeposition study of simulated and dissolution solutions of the positive electrode of a spent Ni-MH battery using the electrochemical quartz crystal microbalance and inductively coupled plasma optical emission spectrometry. Ionics 23:3235–3243CrossRefGoogle Scholar
  10. 10.
    Da Silva PS, Schmitz EPS, Spinelli A, Garcia JR (2012) Electrodeposition of Zn and Zn-Mn alloy coatings from an electrolytic bath prepared by recovery of exhausted zinc-carbon batteries. J Power Sources 210:116–121CrossRefGoogle Scholar
  11. 11.
    Xi G, Xi Y, Xu H, Wang L (2016) Study of the preparation of NI-Mn-Zn ferrite using spent NI-MH and alkaline Zn-Mn batteries. J Magn Magn Mater 398:196–199CrossRefGoogle Scholar
  12. 12.
    Li L, Dunn JB, Zhang XX, Gaines L, Chen RJ, Wu F, Amine K (2013) Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J Power Sources 233:180–189CrossRefGoogle Scholar
  13. 13.
    Li L, Qu W, Zhang X, Lu J, Chen R, Wu F, Amine K (2015) Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries. J Power Sources 282:544–551CrossRefGoogle Scholar
  14. 14.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34:4889–4899CrossRefGoogle Scholar
  16. 16.
    Sarac FE, Unal U (2015) Electrochemical-hydrothermal synthesis of manganese oxide films as electrodes for electrochemical capacitors. Electrochim Acta 178:199–208CrossRefGoogle Scholar
  17. 17.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  18. 18.
    Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3183–3190CrossRefGoogle Scholar
  19. 19.
    Liu E-H, Li W, Li J, Meng XY, Ding R, Tan ST (2009) Preparation and characterization of nanostructured NiO/MnO2 composite electrode for electrochemical supercapacitors. Mater Res Bull 44:1122–1126CrossRefGoogle Scholar
  20. 20.
    Hashemzadeh F, Mehdi Kashani Motlagh M, Maghsoudipour A (2009) A comparative study of hydrothermal and sol-gel methods in the synthesis of MnO2 nanostructures. J Sol-Gel Sci Technol 51:169–174CrossRefGoogle Scholar
  21. 21.
    Tang W, Shan X, Li S, Liu H, Wu X, Chen Y (2014) Sol–gel process for the synthesis of ultrafine MnO2 nanowires and nanorods. Mater Lett 132:317–321CrossRefGoogle Scholar
  22. 22.
    Yang X-H, Wang Y-G, Xiong H-M, Xia Y-Y (2007) Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor. Electrochim Acta 53:752–757CrossRefGoogle Scholar
  23. 23.
    Wang C, Zhan Y, Wu L, Li Y, Liu J (2014) High-voltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm. Nanotechnology 25:305401CrossRefGoogle Scholar
  24. 24.
    Buzatu M, Sǎceanu S, Ghica VG et al (2013) Simultaneous recovery of Zn and MnO2 from used batteries, as raw materials, by electrolysis. Waste Manag 33:1764–1769CrossRefGoogle Scholar
  25. 25.
    Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9CrossRefGoogle Scholar
  26. 26.
    Wei F, Cui X, Chen W, Ivey DG (2008) Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors. J Phys Chem C 112:15075–15083CrossRefGoogle Scholar
  27. 27.
    Rodrigues S, Munichandraiah N, Shukla AK (1998) A cyclic voltammetric study of the kinetics and mechanism of electrodeposition of manganese dioxide. J Appl Electrochem 28:1235–1241CrossRefGoogle Scholar
  28. 28.
    Hussain S, Amade R, Jover E, Bertran E (2013) Water plasma functionalized CNTs/MnO2 composites for supercapacitors. Sci World J 2013:1–9Google Scholar
  29. 29.
    Devaraj S, Munichandraiah N (2009) EQCM investigation of the electrodeposition of MnO2 and its capacitance behavior. Electrochem Solid-State Lett 12:21–25CrossRefGoogle Scholar
  30. 30.
    Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417CrossRefGoogle Scholar
  31. 31.
    Clarke CJ, Browning GJ, Donne SW (2006) An RDE and RRDE study into the electrodeposition of manganese dioxide. Electrochim Acta 51:5773–5784CrossRefGoogle Scholar
  32. 32.
    Barik SP, Prabaharan G, Kumar B (2016) An innovative approach to recover the metal values from spent lithium-ion batteries. Waste Manag 51:222–226CrossRefGoogle Scholar
  33. 33.
    Li L, Bian Y, Zhang X, Guan Y, Fan E, Wu F, Chen R (2018) Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Manag 71:362–371CrossRefGoogle Scholar
  34. 34.
    Yang Y, Xu S, He Y (2017) Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manag 64:219–227CrossRefGoogle Scholar
  35. 35.
    Zhang L-H, Wu S-S, Wan Y, Huo YF, Luo YC, Yang MY, Li MC, Lu ZG (2017) Mn3O4/carbon nanotube nanocomposites recycled from waste alkaline Zn–MnO2 batteries as high-performance energy materials. Rare Metals 36:0–6Google Scholar
  36. 36.
    APHA (2012) Standard methods for the examination of water and wastewater, 2nd edn. American Public Health Association, WashingtonGoogle Scholar
  37. 37.
    Brunauer S, Emmet PH, Teller E (1936) Adsorption of gases in multimolecular layers, vol 407, pp 309–319Google Scholar
  38. 38.
    Webb P, Orr C (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corp., NorcrossGoogle Scholar
  39. 39.
    Vinje K (1995) Characterization of porous solids III. Appl Catal A Gen 121:N23–N24CrossRefGoogle Scholar
  40. 40.
    Gherbi R, Bessekhouad Y, Trari M (2016) Optical and transport properties of Sn-doped ZnMn2O4 prepared by sol–gel method. J Phys Chem Solids 89:69–77CrossRefGoogle Scholar
  41. 41.
    Sing KSW (1995) Physisorption of nitrogen by porous materials. J Porous Mater 2:5–8CrossRefGoogle Scholar
  42. 42.
    Huang T, Zhao C, Qiu Z, Luo J, Hu Z (2017) Hierarchical porous ZnMn2O4 synthesized by the sucrose-assisted combustion method for high-rate supercapacitors. Ionics 23:139–146CrossRefGoogle Scholar
  43. 43.
    Nádherný L, Marysko M, David Sedmidubský CM (2016) Structural and magnetic properties of ZnxMn3−xO4 spinels. J Magn Magn Mater 413:89–96CrossRefGoogle Scholar
  44. 44.
    Gao T, Fjellvåg H, Norby P (2009) A comparison study on Raman scattering properties of α- and β-MnO2. Anal Chim Acta 648:235–239CrossRefGoogle Scholar
  45. 45.
    Gao T, Glerup M, Krumeich F, Nesper R, Fjellvåg H, Norby P (2008) Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers. J Phys Chem C 112:13134–13140CrossRefGoogle Scholar
  46. 46.
    Yang L, Cheng S, Ji X, Jiang Y, Zhou J, Liu M (2015) Investigation into the origin of pseudocapacitive behavior of Mn3O4 electrodes using operando Raman spectroscopy. J Mater Chem A 3:7338–7344CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • P. V. M. Dixini
    • 1
    • 2
  • B. B. Carvalho
    • 1
  • G. R. Gonçalves
    • 2
  • V. C. B. Pegoretti
    • 2
  • M. B. J. G. Freitas
    • 2
    Email author
  1. 1.Federal Institute of Education, Science, and Technology of Espírito SantoAracruzBrazil
  2. 2.Chemistry Department, Laboratory of Electrochemistry and ElectroanalyticsFederal University of Espírito SantoVitóriaBrazil

Personalised recommendations