Advertisement

Ionics

, Volume 25, Issue 9, pp 4137–4147 | Cite as

LiAlCl4·3SO2: a promising inorganic electrolyte for stable Li metal anode at room and low temperature

  • Tiantian Gao
  • Bo WangEmail author
  • Fei Wang
  • Ruopeng Li
  • Lei Wang
  • Dianlong WangEmail author
Original Paper
  • 77 Downloads

Abstract

LiAlCl4·3SO2 is a promising electrolyte used for Li metal batteries. At room and low temperature, a stable solid electrolyte interface film can be formed in LiAlCl4·3SO2 to achieve favorable protection for Li metal anodes. Here, Li|Cu cells with SO2-based inorganic electrolyte (LiAlCl4·3SO2) display higher average coulombic efficiency and more excellent cycling stability compared with a conventional organic electrolyte. Moreover, at 0.5 mA cm−2, the coulombic efficiency of Li|Cu cells with LiAlCl4·3SO2 electrolyte can reach 95% at − 20 °C, while the coulombic efficiency of the conventional organic electrolyte at − 20 °C is only about 79%. Furthermore, LiAlCl4·3SO2 electrolyte is non-combustible. Based on all the experimental results, LiAlCl4·3SO2 is a promising electrolyte candidate for safe Li metal batteries.

Graphic abstract

Lithium metal anode, protected by the stable and dense SEI films formed in non-flammable and inorganic non-aqueous liquid electrolyte-LiAlCl4·3SO2 (IE), exhibits small and stable over-potential during Li stripping/plating compared with conventional organic electrolyte (OE) even at − 20 °C.

Keywords

LiAlCl4·3SO2 electrolyte Non-combustible Li metal anode Stable SEI film Low temperature 

Notes

Funding information

This study is funded by the National Natural Science Foundation of China (No. 51874110 and 51604089), the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2017024), the China Postdoctoral Science Foundation (Grant No. 2016 M601431 and 2018T110308), and the Heilongjiang Province Postdoctoral Science Foundation (Grant No. LBH-Z16056 and LBH-TZ1707).

Supplementary material

11581_2019_2994_MOESM3_ESM.doc (2.7 mb)
ESM 3 (DOC 2801 kb)

References

  1. 1.
    Wang B, Liu T, Liu A, Liu G, Wang L, Gao T, Wang D, Zhao XS (2016) A hierarchical porous C@LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study. Adv Energy Mater 6:1600426CrossRefGoogle Scholar
  2. 2.
    Placke T, Kloepsch R, Dühnen S, Winter M (2017) Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 21:1939–1964CrossRefGoogle Scholar
  3. 3.
    Li W, Song B, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46:3006–3059CrossRefGoogle Scholar
  4. 4.
    Jin C, Sheng O, Luo J, Yuan H, Fang C, Zhang W, Huang H, Gan Y, Xia Y, Liang C, Zhang J, Tao X (2017) 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 37:177–186CrossRefGoogle Scholar
  5. 5.
    Li Q, Zhu S, Lu Y (2017) 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Funct Mater 27:1606422CrossRefGoogle Scholar
  6. 6.
    Han X, Gui X, Yi T-F, Li Y, Yue C (2018) Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opini Solid State Mater Sci 22:109–126CrossRefGoogle Scholar
  7. 7.
    Yi T-F, Zhu Y-R, Tao W, Luo S, Xie Y, Li X-F (2018) Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources 399:26–41CrossRefGoogle Scholar
  8. 8.
    Zhang X-Q, Cheng X-B, Chen X, Yan C, Zhang Q (2017) Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 27:1605989CrossRefGoogle Scholar
  9. 9.
    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537CrossRefGoogle Scholar
  10. 10.
    Yun Q, He YB, Lv W, Zhao Y, Li B, Kang F, Yang QH (2016) Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv Mater 28:6932–6939CrossRefGoogle Scholar
  11. 11.
    Fang Z, Ma Q, Liu P, Ma J, Hu YS, Zhou Z, Li H, Huang X, Chen L (2017) Novel concentrated Li[(FSO2)(n-C4F9SO2)n]-based ether electrolyte for superior stability of metallic lithium anode. ACS Appl Mater Interfaces 9:4282–4289CrossRefGoogle Scholar
  12. 12.
    Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9:618–623CrossRefGoogle Scholar
  13. 13.
    Lu Q, He YB, Yu Q, Li B, Kaneti YV, Yao Y, Kang F, Yang QH (2017) Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater 29:2888–2895Google Scholar
  14. 14.
    Zhang K, Lee G-H, Park M, Li W, Kang Y-M (2016) Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv Energy Mater 6:1600811CrossRefGoogle Scholar
  15. 15.
    Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473CrossRefGoogle Scholar
  16. 16.
    Ota H, Shima K, Ue M, Yamaki J-I (2004) Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim Acta 49:565–572CrossRefGoogle Scholar
  17. 17.
    Guo J, Wen Z, Wu M, Jin J, Liu Y (2015) Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem Commun 51:59–63CrossRefGoogle Scholar
  18. 18.
    Xu Q, Yang Y, Shao H (2016) Enhanced cycleability and dendrite-free lithium deposition by adding potassium ion to the electrolyte for lithium metal batteries. Electrochim Acta 212:758–766CrossRefGoogle Scholar
  19. 19.
    Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang JG (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135:4450–4456CrossRefGoogle Scholar
  20. 20.
    Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362CrossRefGoogle Scholar
  21. 21.
    Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481CrossRefGoogle Scholar
  22. 22.
    Kim H-T, Kang J, Mun J, Oh SM, Yim T, Kim YG (2015) Pyrrolinium-based ionic liquid as a flame retardant for binary electrolytes of lithium ion batteries. ACS Sustain Chem Eng 4:497–505CrossRefGoogle Scholar
  23. 23.
    Dey AN, Kuo HC, Piliero P, Kallianidis M (1988) Inorganic electrolyte Li-SO2 rechargeable system development of a prototype hermetic C cell and evaluation of its performance and safety characteristics. J Electrochem Soc 135:2115–2120CrossRefGoogle Scholar
  24. 24.
    Hill IR, Anderson BG, Goledzinowski M, Dare RJ (1995) Investigations of the chemistry of rechargeable Li-SO2 cells containing tetrachlorometallate SO2 electrolytes. J Electrochem Soc 142:3267–3273CrossRefGoogle Scholar
  25. 25.
    Mammone RJ, Binder M (1986) Elecrochemical characterization of LiAlCl4-SO2 electrolyte. J Electrochem Soc 133:1312–1315CrossRefGoogle Scholar
  26. 26.
    Jeong G, Kim H, Park JH, Jeon J, Jin X, Song J, Kim BR, Park MS, Kim JM, Kim YJ (2015) Nanotechnology enabled rechargeable Li-SO2 batteries: another approach towards post-lithium-ion battery systems. Energy Environ Sci 8:3173–3180CrossRefGoogle Scholar
  27. 27.
    Foster DL, Kuo HC, Schlaikjer CR, Dey AN (1988) New highly conductive inorganic electrolytes-the liquid SO2 solvates of alkali and alkaline earth metal tetrachloroaluminates. J Electrochem Soc 135:2682–2686CrossRefGoogle Scholar
  28. 28.
    Gao T, Wang B, Wang L, Liu G, Wang F, Luo H, Wang D (2018) LiAlCl4·3SO2 as a high conductive, non-flammable and inorganic non-aqueous liquid electrolyte for lithium ion batteries. Electrochim Acta 286:77–85CrossRefGoogle Scholar
  29. 29.
    Hartl R, Fleischmann M, Gschwind R, Winter M, Gores H (2013) A liquid inorganic electrolyte showing an unusually high lithium ion transference number: a concentrated solution of LiAlCl4 in sulfur dioxide. Energies 6:4448–4464CrossRefGoogle Scholar
  30. 30.
    Zhang X-Q, Cheng X-B, Zhang Q (2018) Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces 5:1701097CrossRefGoogle Scholar
  31. 31.
    Song J, Jeong G, Lee AJ, Park JH, Kim H, Kim YJ (2015) Dendrite-free polygonal sodium deposition with excellent interfacial stability in a NaAlCl4-2SO2 inorganic electrolyte. ACS Appl Mater Interfaces 7:27206–27214CrossRefGoogle Scholar
  32. 32.
    Hartl R, Neueder R, Gores HJ (2009) Temperature dependence of association constants of LiAlCl4 in liquid sulfur dioxide. Acta Chim Slov 56:109–114Google Scholar
  33. 33.
    Yang TH, Kim S, Jung Y (2016) Importance of specific capacity based on the mass of active material in the high energy density Li-SO2 secondary batteries with an inorganic electrolyte. Bull Kor Chem Soc 37:917–922CrossRefGoogle Scholar
  34. 34.
    Park SS, Jung Y (2015) Influence of the electrode materials on the electrochemical performance of room temperature Li-SO2 rechargeable battery. Int J Electrochem Sci 10:7574–7581Google Scholar
  35. 35.
    Park CW, Oh SM (1997) Performances of Li_LixCoO2 cells in LiAlCl4-3SO2 electrolyte. J Power Sources 68:338–343CrossRefGoogle Scholar
  36. 36.
    Dreher J, Haas B, Hambitzer G (1993) Rechargeable LiCoO2 in inorganic electrolyte solution. J Power Sources 44:583–587CrossRefGoogle Scholar
  37. 37.
    Mews R, Lork E, Watson PG, Görtler B (2000) Coordination chemistry in and of sulfur dioxide. Coord Chem Rev 197:277–320CrossRefGoogle Scholar
  38. 38.
    Mammone RJ, Binder M (1986) Electrochemical characterization of LiAlCl4-SO2 electrolyte. J Electrochem Soc 133:1312–1315CrossRefGoogle Scholar
  39. 39.
    Grundish N, Amos C, Goodenough JB (2018) Communication—characterization of LiAlCl4·xSO2 inorganic liquid Li+ electrolyte. J Electrochem Soc 165:A1694–A1696CrossRefGoogle Scholar
  40. 40.
    Hambitzer G, Joos M, Schriever U (1993) Volatile products of electrode-reactions in inorganic electrolyte. J Power Sources 44:727–732CrossRefGoogle Scholar
  41. 41.
    Wang B, Liu A, Abdulla WA, Wang D, Zhao XS (2015) Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale 7:8819–8828CrossRefGoogle Scholar
  42. 42.
    Ha J, Park SK, Yu SH, Jin A, Jang B, Bong S, Kim I, Sung YE, Piao Y (2013) A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries. Nanoscale 5:8647–8655CrossRefGoogle Scholar
  43. 43.
    Ma Y, Zhou Z, Li C, Wang L, Wang Y, Cheng X, Zuo P, Du C, Huo H, Gao Y, Yin G (2018) Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Storage Materials 11:197–204CrossRefGoogle Scholar
  44. 44.
    Carlin RT, Fuller J, Kuhn WK, Lysaght MJ, Trulove PC (1996) Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes. J Appl Electrochem 26:1147–1160CrossRefGoogle Scholar
  45. 45.
    Auvergniot J, Cassel A, Foix D, Viallet V, Seznec V, Dedryvère R (2017) Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study. Solid State Ionics 300:78–85CrossRefGoogle Scholar
  46. 46.
    Nandasiri MI, Camacho-Forero LE, Schwarz AM, Shutthanandan V, Thevuthasan S, Balbuena PB, Mueller KT, Murugesan V (2017) In situ chemical imaging of solid-electrolyte interphase layer evolution in Li–S batteries. Chem Mater 29:4728–4737CrossRefGoogle Scholar
  47. 47.
    Xing H, Liao C, Yang Q, Veith GM, Guo B, Sun XG, Ren Q, Hu YS, Dai S (2014) Ambient lithium-SO2 batteries with ionic liquids as electrolytes. Angew Chem Int Ed Eng 53:2099–2103CrossRefGoogle Scholar
  48. 48.
    Schily U, Heitbaum J (1992) Surface analysis of freshly cut Li samples Na segregation and film forming reaction by O2 SO2 and liquid LiAlCl4 3SO2. Electrochim Acta 37:731–738CrossRefGoogle Scholar
  49. 49.
    Contarini S, Rabalais JW (1985) Ion bombardment-induced decomposition of Li and Ba sulfates and carbonates studied by X-ray photoelectron-spectroscopy. J Electron Spectrosc Relat Phenom 35:191–201CrossRefGoogle Scholar
  50. 50.
    Song J, Chun J, Kim A, Jung H, Kim HJ, Kim YJ, Jeong G, Kim H (2018) Dendrite-free Li metal anode for rechargeable Li-SO2 batteries employing surface modification with a NaAlCl4-2SO2 electrolyte. ACS Appl Mater Interfaces 10:34699–34705CrossRefGoogle Scholar
  51. 51.
    Wu H-L, Haasch RT, Perdue BR, Apblett CA, Gewirth AA (2017) The effect of water-containing electrolyte on lithium-sulfur batteries. J Power Sources 369:50–56CrossRefGoogle Scholar
  52. 52.
    Silipigni L, Schirò L, Scolaro LM, De Luca G, Salvato G (2013) XPS analysis of nanocomposite Li2xyMn1−xPS3(C13H11N2)y films. Appl Surf Sci 280:572–577CrossRefGoogle Scholar
  53. 53.
    KNIPE S. W., MYCROFT J. R., PRATT A. R., NESBITT H. W., BANCROFT G. M. (1994) X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals. Geochim Cosmochim Acta 59: 1079–1090Google Scholar
  54. 54.
    Shen X, Qian T, Chen P, Liu J, Wang M, Yan C (2018) Bioinspired polysulfiphobic artificial interphase layer on lithium metal anodes for lithium sulfur batteries. ACS Appl Mater Interfaces 10:30058–30064CrossRefGoogle Scholar
  55. 55.
    Brissot C, Rosso M, Lascaud CJ-N, S. (1999) Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 81:925–929CrossRefGoogle Scholar
  56. 56.
    Rosso M, Gobron T, Brissot C, Chazalviel JN, Lascaud S (2001) Onset of dendritic growth in lithium/polymer cells. J Power Sources 97-8:804–806CrossRefGoogle Scholar
  57. 57.
    Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206CrossRefGoogle Scholar
  58. 58.
    Zhao C-Z, Cheng X-B, Zhang R, Peng H-J, Huang J-Q, Ran R, Huang Z-H, Wei F, Zhang Q (2016) Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Materials 3:77–84CrossRefGoogle Scholar
  59. 59.
    Yang C, Liu B, Jiang F, Zhang Y, Xie H, Hitz E, Hu L (2017) Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res 10:4256–4265CrossRefGoogle Scholar
  60. 60.
    Yan C, Cheng X-B, Zhao C-Z, Huang J-Q, Yang S-T, Zhang Q (2016) Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: the role of polysulfides on lithium anode. J Power Sources 327:212–220CrossRefGoogle Scholar
  61. 61.
    Wu F, Chen N, Chen R, Wang L, Li L (2017) Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries. Nano Energy 31:9–18CrossRefGoogle Scholar
  62. 62.
    Wang B, Abdulla WA, Wang D, Zhao XS (2015) A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8:869–875CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations