Advertisement

Ionics

, Volume 25, Issue 9, pp 4067–4074 | Cite as

A stable protective layer toward high-performance lithium metal battery

  • Hairui Kang
  • Bo WangEmail author
  • Rensheng Song
  • Fei Wang
  • Hao Luo
  • Tingting Ruan
  • Dianlong WangEmail author
Original Paper
  • 205 Downloads

Abstract

Metal lithium anodes are quite promising for next-generation batteries due to their high energy density and low voltage, which has attracted numerous attention of the researchers. However, the main challenge for lithium anodes still lies on their serious dendrite problems, leading to the poor cycling stabilities. Here, we introduced poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) composite film combined with nano alumina (nano-Al2O3), lithium fluoride (LiF) and lithiumbis(trifluoromethanesulphonyl)imide (LiTFSI), as a stable protective layer (SPL), to coat on the surface of cooper current collector, which was beneficial to improve the cycling stabilities of the fabricated lithium–copper (Li–Cu) half-cell. The copper foil electrode modified with the protective layer exhibited a much enhanced cycling performance compared with the one without modification, which did not show obvious capacity decay after 250 cycles at the current density of 0.5 mA/cm2 for 2 h. From SEM and XPS characterizations, it had to be found that the preset protective composite layer kept a stable structure during the charge and discharge process, which guaranteed the achieved stable cycling performance. In addition, a full battery system based on modified copper foil anode and LiFePO4 cathode also constructed and presented a good cycling performance.

Graphic abstract

A stable protective layer was coated on the surface of cooper collector, which inhibited Li dendrites and promoted the performance of lithium metal battery.

Keywords

Lithium anode Protective layer Cycling performance Cooper foil Batteries 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Grant No. 51874110 and 51604089), the China Postdoctoral Science Foundation (Grant No. 2016M601431 and 2018T110308), and the Heilongjiang Province Postdoctoral Science Foundation (Grant No. LBH-Z16056 and LBH-TZ1707).

Supplementary material

11581_2019_2993_MOESM1_ESM.doc (884 kb)
ESM 1 (DOC 884 kb)

References

  1. 1.
    Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206CrossRefGoogle Scholar
  2. 2.
    Wang B, Al Abdulla W, Wang D, Zhao XS (2015) A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8:869–875CrossRefGoogle Scholar
  3. 3.
    Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473CrossRefGoogle Scholar
  4. 4.
    Guo Y, Li H, Zhai T (2017) Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater 29:194–206Google Scholar
  5. 5.
    Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q (2017) Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 27:1605989CrossRefGoogle Scholar
  6. 6.
    Alvarado J, Schroeder MA, Pollard TP, Wang X, Lee JZ, Zhang MH, Wynn T, Ding M, Borodin O, Meng YS, Xu K (2019) Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ Sci 12:780–794CrossRefGoogle Scholar
  7. 7.
    Chen S, Zheng J, Mei D, Han KS, Engelhard MH, Zhao W, Xu W, Liu J, Zhang JG (2018) High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater 30:1877–1892Google Scholar
  8. 8.
    Zhang G, Peng HJ, Zhao CZ, Chen X, Zhao LD, Li P, Huang JQ, Zhang Q (2018) The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries. Angew Chem 57:16732–16736CrossRefGoogle Scholar
  9. 9.
    Yue XY, Wang WW, Wang QC, Meng JK, Wang XX, Song Y, Fu ZW, Wu XJ, Zhou YN (2018) Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries. Energy Storage Materials  https://doi.org/10.1016/j.ensm.2018.12.007
  10. 10.
    Song R, Wang B, Xie Y, Ruan T, Wang F, Yuan Y, Wang DL, Dou SX (2018) A 3D conductive scaffold with lithiophilic modification for stable lithium metal batteries. J Mater Chem A 6:17967–17976CrossRefGoogle Scholar
  11. 11.
    Ye H, Xin S, Yin YX, Li JY, Guo YG, Wan LJ (2017) Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in xpherical carbon granules with 3D conducting skeletons. J Am Chem Soc 139:5916–5922CrossRefGoogle Scholar
  12. 12.
    Zuo TT, Wu XW, Yang CP, Yin YX, Ye H, Li NW, Guo YG (2017) Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater 29:764–777Google Scholar
  13. 13.
    Fan L, Li S, Liu L, Zhang W, Gao LN, Fu Y, Chen F, Li J, Zhuang HLL, Lu YY (2018) Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv Energy Mater 8:1802350CrossRefGoogle Scholar
  14. 14.
    Li BQ, Chen XR, Chen X, Zhao CX, Zhang R, Cheng XB, Zhang Q (2019) Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes. Research 2019:1–11Google Scholar
  15. 15.
    Luo H, Wang B, Liu T, Jin F, Liu R, Xu CY, Wang CH, Ji KM, Zhou Y, Wang DL, Dou SX (2018) Hierarchical design of hollow Co-Ni LDH nanocages strung by MnO2 nanowire with enhanced pseudocapacitive properties. Energy Storage Materials.  https://doi.org/10.1016/j.ensm.2018.10.016
  16. 16.
    Shi P, Li T, Zhang R, Shen X, Cheng XB, Xu R, Huang JQ, Chen XR, Liu H, Zhang Q (2019) Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv Mater 31:1807131CrossRefGoogle Scholar
  17. 17.
    Chen X, Chen XR, Hou TZ, Li BQ, Cheng XB, Zhang R, Zhang Q (2019) Lithiophilicity chemistry of heteroatom-dopedcarbon to guide uniform lithium nucleationin lithium metal anodes. Sci Advances 5:7728CrossRefGoogle Scholar
  18. 18.
    Ye H, Zheng ZJ, Yao HR, Liu SC, Zuo TT, Wu XW, Yin YX, Li NW, Gu JJ, Cao FF, Guo YG (2019) Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew Chem 58:1094–1099CrossRefGoogle Scholar
  19. 19.
    Cheng XB, Zhao MQ, Chen C, Pentecost A, Maleski K, Mathis T, Zhang XQ, Zhang Q, Jiang JJ, Gogotsi Y (2017) Nanodiamonds suppress the growth of lithium dendrites. Nat Commun 8:336CrossRefGoogle Scholar
  20. 20.
    Liu S, Wang A, Li Q, Wu J, Chiou K, Huang J, Luo JY (2018) Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule 2:184–193CrossRefGoogle Scholar
  21. 21.
    Pu J, Li J, Shen Z, Zhong C, Liu J, Ma H, Zhu J, Zhang HG, Braun PV (2018) Interlayer lithium plating in Au nanoparticles pillared reduced graphene oxide for lithium metal anodes. Adv Funct Mater 28:1804133CrossRefGoogle Scholar
  22. 22.
    Zhang R, Chen XR, Chen X, Cheng XB, Zhang XQ, Yan C, Zhang Q (2017) Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem 56:7764–7768CrossRefGoogle Scholar
  23. 23.
    Liu H, Chen X, Cheng X-B, Li BQ, Zhang R, Wang B, Chen X, Zhang Q (2018) Uniform lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries. Small Methods.  https://doi.org/10.1002/smtd.201800354
  24. 24.
    Zhang R, Chen X, Shen X, Zhang XQ, Chen XR, Cheng XB, Yan C, Zhao CZ, Zhang Q (2018) Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2:764–777CrossRefGoogle Scholar
  25. 25.
    Sun Y, Zheng G, Seh ZW, Liu N, Wang S, Sun J, Lee HR, Cui Y (2016) Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 1:287–297CrossRefGoogle Scholar
  26. 26.
    Zhao J, Zhou G, Yan K, Xie J, Li Y, Liao L, Jin Y, Liu K, Hsu PC, Wang JY, Cheng HM, Cui Y (2017) Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotechnol 12:993–999CrossRefGoogle Scholar
  27. 27.
    Zhu B, Jin Y, Hu X, Zheng Q, Zhang S, Wang Q, Zhu J (2017) Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater 29:1603755CrossRefGoogle Scholar
  28. 28.
    Yan C, Cheng XB, Tian Y, Chen X, Zhang XQ, Li WJ, Huang JQ, Zhang Q (2018) Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv Mater 30:1707629CrossRefGoogle Scholar
  29. 29.
    Wang W, Yue X, Meng J, Wang J, Wang X, Chen H, Shi DR, Fu J, Zhou YN, Chen J, Fu ZW (2018) Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Materials 18:414–422CrossRefGoogle Scholar
  30. 30.
    Li NW, Yin YX, Yang CP, Guo YG (2016) An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater 28:1853–1858CrossRefGoogle Scholar
  31. 31.
    Yin YB, Yang XY, Chang ZW, Zhu YH, Liu T, Yan JM, Jiang Q (2018) A water−/firepro of flexible lithium-oxygen battery achieved by synergy of novel architecture and multifunctional separator. Adv Mater 30:1703791CrossRefGoogle Scholar
  32. 32.
    Lopez J, Pei A, Oh JY, Wang GN, Cui Y, Bao Z (2018) Effects of polymer coatings on electrodeposited lithium metal. J Am Chem Soc 140:11735–11744CrossRefGoogle Scholar
  33. 33.
    Zhao CZ, Zhang XQ, Cheng XB, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q (2017) An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc Natl Acad Sci U S A 114:11069–11074CrossRefGoogle Scholar
  34. 34.
    Cheng XB, Yan C, Chen X, Guan C, Huang JQ, Peng HJ, Zhang R, Yang ST, Zhang Q (2017) Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2:258–270CrossRefGoogle Scholar
  35. 35.
    Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao HB, Wang HT, Li WY, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9:618–623CrossRefGoogle Scholar
  36. 36.
    Yan K, Lee HW, Gao T, Zheng G, Yao H, Wang HT, Lu ZD, Zhou Y, Liang Z, Liu ZF, Chu S, Cui Y (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett 14:6016–6022CrossRefGoogle Scholar
  37. 37.
    Wang B, Liu A, Abdulla WA, Wang D, Zhao XS (2015) Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale 7:8819–8828CrossRefGoogle Scholar
  38. 38.
    Xu R, Zhang XQ, Cheng XB, Peng HJ, Zhao CZ, Yan C, Huang JQ (2018) Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater 28:1705838CrossRefGoogle Scholar
  39. 39.
    Wang B, Xie Y, Liu T, Luo H, Wang B, Wang C, Wang L, Wang DL, Dou SX, Zhou Y (2017) LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries. Nano Energy 42:363–372CrossRefGoogle Scholar
  40. 40.
    Wang B, Wang D, Wang Q, Liu T, Guo C, Zhao X (2013) Improvement of the electrochemical performance of carbon-coated LiFePO4 modified with reduced graphene oxide. J Mater Chem A 1:135–144CrossRefGoogle Scholar
  41. 41.
    Wang B, Liu T, Liu A, Liu G, Wang L, Gao TT, Wang DL, Zhao XS (2016) A hierarchical porous C@LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study. Adv Eng Mater 6:1600426CrossRefGoogle Scholar
  42. 42.
    Han X, Gui X, Yi TF, Li YW, Yue CB (2018) Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opin Solid State Mater Sci 22:109–126.  https://doi.org/10.1016/jcossms201805005 CrossRefGoogle Scholar
  43. 43.
    Yi TF, Zhu YR, Tao W, Luo S, Xie Y, Li XF (2018) Recent advances in the research of MLi2Ti6O14 (M= 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources 399:26–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical Engineering, Harbin Institute of TechnologyHarbinChina

Personalised recommendations