Advertisement

Ionics

, Volume 25, Issue 9, pp 4361–4370 | Cite as

Microwave-assisted green synthesis of manganese molybdate nanorods for high-performance supercapacitor

  • Yuwan Zhang
  • Yifei Teng
  • Yingdi Li
  • Xiaomin Du
  • Liangyu Liu
  • Yunpeng Wu
  • Ya’nan Meng
  • Yingjie Hua
  • Xudong Zhao
  • Xiaoyang LiuEmail author
Original Paper
  • 88 Downloads

Abstract

Recently, metal molybdates have drawn significant attention due to their excellent electrochemical properties and remarkable performances in various fields, especially for supercapacitors. The rod-like α-MnMoO4 crystallites were designed and synthesized via a microwave-assisted hydrothermal process followed by annealing and used as electrode materials for supercapacitors. The effects of different microwave reaction time on the electrochemical properties of samples were investigated. The formation of nanorods and the microwave heating mechanism involved were introduced. Thorough characterization of the electrochemical properties was performed, and the results demonstrated the extraordinary supercapacitor properties with a high specific capacitance (446.7 F g−1 at current densities of 1 mA cm−2), excellent rate capability, and superior cycling stability (81.12% retained after 3000 cycles at 8 mA cm−2). This work provided a rapid, facile, and environment-friendly strategy for active molybdates material synthesis and outlined the superior electrochemical properties of rod-like α-MnMoO4 crystallites and its great potential in supercapacitor applications.

Keywords

MnMoO4 nanorods Microwave-assisted hydrothermal synthesis Supercapacitors Electrode materials Energy storage 

Notes

Supplementary material

11581_2019_2991_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1202 kb)

References

  1. 1.
    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62.  https://doi.org/10.1002/adma.200903328 CrossRefGoogle Scholar
  2. 2.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828.  https://doi.org/10.1039/c1cs15060j CrossRefGoogle Scholar
  3. 3.
    Miller JR, Simon P (2008) Materials science - electrochemical capacitors for energy management. Science 321(5889):651–652.  https://doi.org/10.1126/science.1158736 CrossRefGoogle Scholar
  4. 4.
    Yan JA, Khoo E, Sumboja A, Lee PS (2010) Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 4(7):4247–4255.  https://doi.org/10.1021/nn100592d CrossRefGoogle Scholar
  5. 5.
    Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, Zhang Q, Zhang H (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7(22):3163–3168.  https://doi.org/10.1002/smll.201100990 CrossRefGoogle Scholar
  6. 6.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854.  https://doi.org/10.1038/nmat2297 CrossRefGoogle Scholar
  7. 7.
    Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22(12):2632–2641.  https://doi.org/10.1002/adfm.201102839 CrossRefGoogle Scholar
  8. 8.
    Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J (2013) Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl Mater Interfaces 5(17):8790–8795.  https://doi.org/10.1021/am402681m CrossRefGoogle Scholar
  9. 9.
    Yan Y, Xu H, Guo W, Huang Q, Zheng M, Pang H, Xue H (2016) Facile synthesis of amorphous aluminum vanadate hierarchical microspheres for supercapacitors. Inorganic Chemistry Frontiers 3(6):791–797.  https://doi.org/10.1039/c6qi00089d CrossRefGoogle Scholar
  10. 10.
    Sen P, De A (2010) Electrochemical performances of poly(3,4-ethylenedioxythiophene)–NiFe2O4 nanocomposite as electrode for supercapacitor. Electrochim Acta 55(16):4677–4684.  https://doi.org/10.1016/j.electacta.2010.03.077 CrossRefGoogle Scholar
  11. 11.
    Niu L, Li Z, Xu Y, Sun J, Hong W, Liu X, Wang J, Yang S (2013) Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl Mater Interfaces 5(16):8044–8052.  https://doi.org/10.1021/am402127u CrossRefGoogle Scholar
  12. 12.
    Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381.  https://doi.org/10.1038/ncomms1387 CrossRefGoogle Scholar
  13. 13.
    Cai D, Wang D, Liu B, Wang Y, Liu Y, Wang L, Li H, Huang H, Li Q, Wang T (2013) Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl Mater Interfaces 5(24):12905–12910.  https://doi.org/10.1021/am403444v CrossRefGoogle Scholar
  14. 14.
    Gao Y-P, Huang K-J, Zhang C-X, Song S-S, Wu X (2018) High-performance symmetric supercapacitor based on flower-like zinc molybdate. J Alloys Compd 731:1151–1158.  https://doi.org/10.1016/j.jallcom.2017.10.161 CrossRefGoogle Scholar
  15. 15.
    Raju GSR, Pavitra E, Ko YH, Yu JS (2012) A facile and efficient strategy for the preparation of stable CaMoO4 spherulites using ammonium molybdate as a molybdenum source and their excitation induced tunable luminescent properties for optical applications. J Mater Chem 22(31):15562.  https://doi.org/10.1039/c2jm32049e CrossRefGoogle Scholar
  16. 16.
    Minakshi M, Mitchell DRG, Munnangi AR, Barlow AJ, Fichtner M (2018) New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices. Nanoscale 10(27):13277–13288.  https://doi.org/10.1039/c8nr03824d CrossRefGoogle Scholar
  17. 17.
    Yin Z, Zhang S, Chen Y, Gao P, Zhu C, Yang P, Qi L (2015) Hierarchical nanosheet-based NiMoO4 nanotubes: synthesis and high supercapacitor performance. J Mater Chem A 3(2):739–745.  https://doi.org/10.1039/c4ta05468g CrossRefGoogle Scholar
  18. 18.
    Jothi PR, Shanthi K, Salunkhe RR, Pramanik M, Malgras V, Alshehri SM, Yamauchi Y (2015) Synthesis and characterization of α-NiMoO4 nanorods for supercapacitor application. Eur J Inorg Chem 2015(22):3694–3699.  https://doi.org/10.1002/ejic.201500410 CrossRefGoogle Scholar
  19. 19.
    Huang Z, Zhang Z, Qi X, Ren X, Xu G, Wan P, Sun X, Zhang H (2016) Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. Nanoscale 8(27):13273–13279.  https://doi.org/10.1039/c6nr04020a CrossRefGoogle Scholar
  20. 20.
    Cao Y, Li W, Xu K, Zhang Y, Ji T, Zou R, Yang J, Qin Z, Hu J (2014) MnMoO4·4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties. J Mater Chem A 2(48):20723–20728.  https://doi.org/10.1039/c4ta04019h CrossRefGoogle Scholar
  21. 21.
    Gu Z, Zhang X (2016) NiCo2O4@MnMoO4 core–shell flowers for high performance supercapacitors. J Mater Chem A 4(21):8249–8254.  https://doi.org/10.1039/c6ta02746f CrossRefGoogle Scholar
  22. 22.
    Veerasubramani GK, Krishnamoorthy K, Sivaprakasam R, Kim SJ (2014) Sonochemical synthesis, characterization, and electrochemical properties of MnMoO4 nanorods for supercapacitor applications. Mater Chem Phys 147(3):836–842.  https://doi.org/10.1016/j.matchemphys.2014.06.028 CrossRefGoogle Scholar
  23. 23.
    Baskar S, Ramakrishnan KS, Danielle M, Manickam M (2015) Synthesis and characterization of manganese molybdate for symmetric capacitor applications. Int J Electrochem Sci 10:185–193Google Scholar
  24. 24.
    Ghosh D, Giri S, Moniruzzaman M, Basu T, Mandal M, Das CK (2014) Alpha MnMoO(4)/graphene hybrid composite: high energy density supercapacitor electrode material. Dalton Trans 43(28):11067–11076.  https://doi.org/10.1039/c4dt00672k CrossRefGoogle Scholar
  25. 25.
    Yesuraj J, Elumalai V, Bhagavathiachari M, Samuel AS, Elaiyappillai E, Johnson PM (2017) A facile sonochemical assisted synthesis of α-MnMoO4/PANI nanocomposite electrode for supercapacitor applications. J Electroanal Chem 797:78–88.  https://doi.org/10.1016/j.jelechem.2017.05.019 CrossRefGoogle Scholar
  26. 26.
    Wang L, Yue L, Zang X, Zhu H, Hao X, Leng Z, Liu X, Chen S (2016) Synthesis of 3D α-MnMoO4 hierarchical architectures for high-performance supercapacitor applications. CrystEngComm 18(48):9286–9291.  https://doi.org/10.1039/c6ce02051h CrossRefGoogle Scholar
  27. 27.
    Lu Y, Zhao M, Luo R, Yu Q, Lv J, Wang W, Yan H, Peng T, Liu X, Luo Y (2017) Electrospun porous MnMoO4 nanotubes as high-performance electrodes for asymmetric supercapacitors. J Solid State Electrochem 22(3):657–666.  https://doi.org/10.1007/s10008-017-3781-2 CrossRefGoogle Scholar
  28. 28.
    Meher SK, Justin P, Rao GR (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces 3(6):2063–2073.  https://doi.org/10.1021/am200294k CrossRefGoogle Scholar
  29. 29.
    Jhung SH, Jin T, Hwang YK, Chang JS (2007) Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation. Chemistry 13(16):4410–4417.  https://doi.org/10.1002/chem.200700098 CrossRefGoogle Scholar
  30. 30.
    Xu LP, Ding YS, Chen CH, Zhao LL, Rimkus C, Joesten R, Suib SL (2008) 3D flowerlike alpha-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chem Mater 20(1):308–316.  https://doi.org/10.1021/cm702207w CrossRefGoogle Scholar
  31. 31.
    Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry 11(2):440–452.  https://doi.org/10.1002/chem.200400417 CrossRefGoogle Scholar
  32. 32.
    Jayasubramaniyan S, Balasundari S, Rayjada PA, Satyanarayana N, Muralidharan P (2018) Microwave hydrothermal synthesis of α-MnMoO4 nanorods for high electrochemical performance supercapacitors. RSC Adv 8(40):22559–22568.  https://doi.org/10.1039/c8ra02751j CrossRefGoogle Scholar
  33. 33.
    Cao H, Wu N, Liu Y, Wang S, Du W, Liu J (2017) Facile synthesis of rod-like manganese molybdate crystallines with two-dimentional nanoflakes for supercapacitor application. Electrochim Acta 225:605–613.  https://doi.org/10.1016/j.electacta.2017.01.021 CrossRefGoogle Scholar
  34. 34.
    Xia X, Lei W, Hao Q, Wang W, Wang X (2013) One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim Acta 99:253–261.  https://doi.org/10.1016/j.electacta.2013.03.131 CrossRefGoogle Scholar
  35. 35.
    Huang Y, Miao YE, Lu H, Liu T (2015) Hierarchical ZnCo2O4@NiCo2O4 core-sheath nanowires: bifunctionality towards high-performance supercapacitors and the oxygen-reduction reaction. Chemistry 21(28):10100–10108.  https://doi.org/10.1002/chem.201500924 CrossRefGoogle Scholar
  36. 36.
    Gabriel C, Gabriel S, Grant EH, Halstead BS, Mingos DMP (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27(3):213–224.  https://doi.org/10.1039/A827213Z CrossRefGoogle Scholar
  37. 37.
    Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed Eng 50(48):11312–11359.  https://doi.org/10.1002/anie.201101274 CrossRefGoogle Scholar
  38. 38.
    Li J, Wei M, Chu W, Wang N (2017) High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chem Eng J 316:277–287.  https://doi.org/10.1016/j.cej.2017.01.057 CrossRefGoogle Scholar
  39. 39.
    Li L, Zhang Y, Shi F, Zhang Y, Zhang J, Gu C, Wang X, Tu J (2014) Spinel manganese-nickel-cobalt ternary oxide nanowire array for high-performance electrochemical capacitor applications. ACS Appl Mater Interfaces 6(20):18040–18047.  https://doi.org/10.1021/am5048653 CrossRefGoogle Scholar
  40. 40.
    Watcharatharapong T, Minakshi Sundaram M, Chakraborty S, Li D, Shafiullah GM, Aughterson RD, Ahuja R (2017) Effect of transition metal cations on stability enhancement for molybdate-based hybrid supercapacitor. ACS Appl Mater Interfaces 9(21):17977–17991.  https://doi.org/10.1021/acsami.7b03836 CrossRefGoogle Scholar
  41. 41.
    Chen Y, Li Y, Hai Z, Li Y, Kan S, Chen J, Chen X, Zhuiykov S, Cui D, Xue C (2018) Facile-synthesized NiCo2O4@MnMoO4 with novel and functional structure for superior performance supercapacitors. Appl Surf Sci 452:413–422.  https://doi.org/10.1016/j.apsusc.2018.05.026 CrossRefGoogle Scholar
  42. 42.
    Cui C, Xu J, Wang L, Guo D, Mao M, Ma J, Wang T (2016) Growth of NiCo2O4@MnMoO4 nanocolumn arrays with superior pseudocapacitor properties. ACS Appl Mater Interfaces 8(13):8568–8575.  https://doi.org/10.1021/acsami.6b02962 CrossRefGoogle Scholar
  43. 43.
    Kong D, Luo J, Wang Y, Ren W, Yu T, Luo Y, Yang Y, Cheng C (2014) Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: morphology control and electrochemical energy storage. Adv Funct Mater 24(24):3815–3826.  https://doi.org/10.1002/adfm.201304206 CrossRefGoogle Scholar
  44. 44.
    Xiao K, Xia L, Liu G, Wang S, Ding L-X, Wang H (2015) Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. J Mater Chem A 3(11):6128–6135.  https://doi.org/10.1039/c5ta00258c CrossRefGoogle Scholar
  45. 45.
    Seevakan K, Manikandan A, Devendran P, Slimani Y, Baykal A, Alagesan T (2018) Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceram Int 44(16):20075–20083.  https://doi.org/10.1016/j.ceramint.2018.07.282 CrossRefGoogle Scholar
  46. 46.
    Nti F, Anang DA, Han JI (2018) Facile room temperature synthesis and application of MnMoO4·0.9H2O as supercapacitor electrode material. Mater Lett 217:146–150.  https://doi.org/10.1016/j.matlet.2018.01.072 CrossRefGoogle Scholar
  47. 47.
    Wang H, Song Y, Zhou J, Xu X, Hong W, Yan J, Xue R, Zhao H, Liu Y, Gao J (2016) High-performance supercapacitor materials based on polypyrrole composites embedded with core-sheath polypyrrole@MnMoO4 nanorods. Electrochim Acta 212:775–783.  https://doi.org/10.1016/j.electacta.2016.07.035 CrossRefGoogle Scholar
  48. 48.
    Wu H, Lou Z, Yang H, Shen G (2015) A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 7(5):1921–1926.  https://doi.org/10.1039/c4nr06336h CrossRefGoogle Scholar
  49. 49.
    Fan K, Chen H, Ji Y, Huang H, Claesson PM, Daniel Q, Philippe B, Rensmo H, Li F, Luo Y, Sun L (2016) Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat Commun 7:11981.  https://doi.org/10.1038/ncomms11981 CrossRefGoogle Scholar
  50. 50.
    Ruan Y, Jiang J, Wan H, Ji X, Miao L, Peng L, Zhang B, Lv L, Liu J (2016) Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors. J Power Sources 301:122–130.  https://doi.org/10.1016/j.jpowsour.2015.09.116 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuwan Zhang
    • 1
  • Yifei Teng
    • 1
  • Yingdi Li
    • 1
  • Xiaomin Du
    • 1
  • Liangyu Liu
    • 1
  • Yunpeng Wu
    • 1
  • Ya’nan Meng
    • 1
  • Yingjie Hua
    • 2
  • Xudong Zhao
    • 1
  • Xiaoyang Liu
    • 1
    Email author
  1. 1.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunChina
  2. 2.School of Chemistry and Chemical Engineering; the Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan ProvinceHainan Normal UniversityHaikouChina

Personalised recommendations