Advertisement

Ionics

, Volume 25, Issue 9, pp 4509–4516 | Cite as

Enhanced performance of mesostructured perovskite solar cells with a composite Sn4+-doped TiO2 electron transport layer

  • Shuo Wang
  • Yu Zhu
  • Bao Liu
  • Chengyan WangEmail author
  • Ruixin MaEmail author
Original Paper
  • 73 Downloads

Abstract

Recently, perovskite solar cells (PSCs) have attracted more attention. TiO2 as the most common electron transfer material in PSCs has been improved by a serious of methods. In this study, a simple method was used to improve the traditional compact TiO2 properties by doping with Sn4+. It demonstrated that the conductivity of the TiO2 film could be well improved and the band-gap shifted from 3.65 to 3.55 eV with the introduction of Sn ions. The Sn–O–Ti bond was observed in the Sn:TiO2 film according to the results of XPS. The mesostructured PSCs based on Sn:TiO2 exhibited negligible J-V hysteresis behavior, and the Jsc of the device increased distinctly. The power conversion efficiency (PCE) of the Sn:TiO2 device was improved from 14.86 to 17.11%, compared with the reference device.

Keywords

Sn-doping TiO2 Electron transfer layers Less hysteresis Mesostructured 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (No. U1302274 and 51674026) and the Fundamental Research Funds for the Central Universities (230201606500078).

References

  1. 1.
    Zhao Y, Zhu K (2016) Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev 45:655–689CrossRefGoogle Scholar
  2. 2.
    Bai Y, Meng X, Yang S (2017) Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv Energy Mater 8:1701883Google Scholar
  3. 3.
    Peng X, Yuan J, Shen S, Gao M, Chesman ASR, Yin H, Cheng J, Zhang Q, Angmo D (2017) Perovskite and organic solar cells fabricated by inkjet printing: progress and prospects. Adv Funct Mater 27:1703704CrossRefGoogle Scholar
  4. 4.
    Pintilie I, Stancu V, Tomulescu A, Radu R, Besleaga Stan C, Trinca L, Pintilie L (2017) Properties of perovskite ferroelectrics deposited on F doped SnO 2 electrodes and the prospect of their integration into perovskite solar cells. Mater Design 135:112–121CrossRefGoogle Scholar
  5. 5.
    Wang P, Zhao J, Liu J, Wei L, Liu Z, Guan L, Cao G (2017) Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. J Power Sources 339:51–60CrossRefGoogle Scholar
  6. 6.
    Shi Z, Guo J, Chen Y, Li Q, Pan Y, Zhang H, Xia Y, Huang W (2017) Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv Mater 29:1605005CrossRefGoogle Scholar
  7. 7.
    Kim H, Lee C, Im J, Lee K, Moehl T, Marchioro A, Moon S, Humphry-Baker R, Yum J, Moser JE, Grätzel M, Park N (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591Google Scholar
  8. 8.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRefGoogle Scholar
  9. 9.
    Jeon NJ, Na H, Jung EH, Yang T, Lee YG, Kim G, Shin H, Il Seok S, Lee J, Seo J (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3:682–689CrossRefGoogle Scholar
  10. 10.
    Chen C, Cheng Y, Dai Q, Song H (2016) Radio frequency magnetron sputtering deposition of TiO2 thin films and their perovskite solar cell applications. Sci Rep-UK 5Google Scholar
  11. 11.
    Gu X, Wang Y, Zhang T, Liu D, Zhang R, Zhang P, Jiang Wu CBZD (2017) Enhanced electronic transport in Fe3+-doped TiO2 for high efficiency perovskite solar cells. J Mater Chem C 5:10754–10760CrossRefGoogle Scholar
  12. 12.
    Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC (2017) Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356:1376–1379CrossRefGoogle Scholar
  13. 13.
    Liu D, Li S, Zhang P, Wang Y, Zhang R, Sarvari H, Wang F, Wu J, Wang Z, Chen ZD (2017) Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 31:462–468CrossRefGoogle Scholar
  14. 14.
    Lv M, Lv W, Fang X, Sun P, Lin B, Zhang S, Xu X, Ding J, Yuan N (2016) Performance enhancement of perovskite solar cells with a modified TiO2 electron transport layer using Zn-based additives. RSC Adv 6:35044–35050CrossRefGoogle Scholar
  15. 15.
    Wang J, Qin M, Tao H, Ke W, Chen Z (2015) Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer. Appl Phys Lett 106:121104CrossRefGoogle Scholar
  16. 16.
    Chen B, Rao H, Li W, Xu Y, Chen H, Kuang D, Su C (2016) Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction. J Mater Chem A 4:5647–5653CrossRefGoogle Scholar
  17. 17.
    Huanping Zhou QCGL, Hsin-Sheng Duan ZHJY (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546CrossRefGoogle Scholar
  18. 18.
    Kim JK, Chai SU, Ji Y, Levy-Wendt B, Kim SH, Yi Y, Heinz TF, Nørskov JK, Park JH, Zheng X (2018) Resolving hysteresis in perovskite solar cells with rapid flame-processed cobalt-doped TiO2. Adv Energy Mater 8:1801717Google Scholar
  19. 19.
    Giordano F, Abate A, Correa Baena JP, Saliba M, Matsui T, Im SH, Zakeeruddin SM, Nazeeruddin MK, Hagfeldt A, Graetzel M (2016) Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat Commun 7:10379CrossRefGoogle Scholar
  20. 20.
    Chen H, Liu D, Wang Y, Wang C, Zhang T, Zhang P, Sarvari H, Chen Z, Li S (2017) Enhanced performance of planar perovskite solar cells using low-temperature solution-processed Al-doped SnO2 as electron transport layers. Nanoscale Res Lett 12:238CrossRefGoogle Scholar
  21. 21.
    Huang X, Hu Z, Xu J, Wang P, Wang L, Zhang J, Zhu Y (2017) Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Sol Energy Mater Sol Cells 164:87–92CrossRefGoogle Scholar
  22. 22.
    Zhang X, Bao Z, Tao X, Sun H, Chen W (2014) Sn-doped TiO2 nanorod arrays and application in perovskite solar cells. RSC Adv 4:64001–64005CrossRefGoogle Scholar
  23. 23.
    Li L, Chen Y, Liu Z, Chen Q, Wang X, Zhou H (2016) The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell. Adv Mater 28:9862–9868CrossRefGoogle Scholar
  24. 24.
    Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JT, Wojciechowski K, Zhang W (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 5:1511–1515CrossRefGoogle Scholar
  25. 25.
    Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14:2584–2590CrossRefGoogle Scholar
  26. 26.
    Heo JH, Han HJ, Kim D, Ahn TK, Im SH (2015) Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci 8:1602–1608CrossRefGoogle Scholar
  27. 27.
    Dong J, Zhao Y, Shi J, Wei H, Xiao J, Xu X, Luo J, Xu J, Li D, Luo Y, Meng Q (2014) Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chem Commun 50:13381–13384CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Rare and Precious Metals Green Recycling and ExtractionUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations