, Volume 25, Issue 9, pp 4481–4492 | Cite as

The effect of the structural, optical, and surface properties of anatase-TiO2 film on photocatalytic degradation of methylene blue organic contaminant

  • Müge Söyleyici CergelEmail author
  • Ersin Demir
  • Ferhunde Atay
Original Paper


TiO2 film was prepared onto glass substrates with ultrasonic spray pyrolysis technique by using the less reported Ti (IV) chloride precursor, and then a highly anatase TiO2 film was successfully produced by annealing at 550 °C for 3 h in air. The structural, optical, and surface properties were characterized in detail by means of X-ray diffraction (XRD) patterns, UV–vis spectroscopy, spectroscopic ellipsometry, photoluminescence spectrometry, atomic force microcopy (AFM), and energy dispersive X-ray (EDX) spectroscopy. Furthermore, to investigate the application potential as a catalyst, the photocatalytic property of TiO2 film was tested by the degradation of methylene blue dye at various time intervals under UV light. It was determined that photocatalytic degradation of methylene blue using TiO2 film has the highest correlation with first-order velocity law, and the degradation efficiency was successfully achieved at 66.1% after 1 h. Consequently, an alternative, inexpensive, easily applicable, and highly efficient material was developed for the removal of organic dyes in wastewater.


TiO2 film Ultrasonic spray pyrolysis Methylene blue Photocatalytic degradation Photoluminescence 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Qi K, Cheng B, Yu J, Ho W (2017) A review on TiO2-based Z-scheme photocatalysts. Chin J Catal 38:1936–1955CrossRefGoogle Scholar
  2. 2.
    Varshneya G, Kanel SR, Kempisty DM, Varshney V, Agrawal A, Sahle-Demessie E, Varma RS, Nadagoudac MN (2016) Nanoscale TiO2 films and their application in remediation of organic pollutants. Coord Chem Rev 306:43–64CrossRefGoogle Scholar
  3. 3.
    Xu H, Liu X, Cui D, Li M, Jiang M (2006) A novel method for improving the performance of ZnO gas sensors. Sensors Actuators B Chem 114:301–307CrossRefGoogle Scholar
  4. 4.
    Hansel H, Zetti H, Kraush G, Kisselev R, Thelakat Schmidt MHW (2003) Optical and electronic contributions in double-heterojunction organic thin film solar cells. Adv Mater 15:2056–2060CrossRefGoogle Scholar
  5. 5.
    Baig U, Gondal MA, Ilyas AM, Sanagi MM (2017) Band gap engineered polymeric-inorganic nanocomposite catalysts: synthesis, isothermal stability, photocatalytic activity and photovoltaic performance. J Mater Sci Technol 33:547–557CrossRefGoogle Scholar
  6. 6.
    Liu C, Zhu X, Wang P, Zhao Y, Ma Y (2018) Defects and interface states related photocatalytic properties in reduced and subsequently nitridized Fe3O4/TiO2. J Mater Sci Technol 34:931–947CrossRefGoogle Scholar
  7. 7.
    Ennaceri H, Erfurt D, LanWang, Köhler T, Taleb A, Khaldoun A, El Kenz A, Benyoussef A, Ennaoui A (2016) Deposition of multifunctional TiO2 and ZnO top-protective coatings for CSP application. Surf Coat Technol 298:103–113CrossRefGoogle Scholar
  8. 8.
    Acik IO, Oyekoya NG, Mere A, Loot A, Dolgov L, Mikli V, Krunks M, Sildos I (2015) Plasmonic TiO2:Au composite layers deposited in situ by chemical spray pyrolysis. Surf Coat Technol 27:27–31CrossRefGoogle Scholar
  9. 9.
    Qi K, Liu SY, Qiu M (2018) Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects. Chin J Catal 39:867–875CrossRefGoogle Scholar
  10. 10.
    Arunachalam A, Dhanapandian S, Manoharan C, Bououdina M, Ramalingam G, Rajasekaran M, Radhakrishnan M, Ibraheem AM (2016) Influence of sprayed nanocrystalline Zn-doped TiO2 photoelectrode with the dye extracted from Hibiscus Surattensis as sensitizer in dye-sensitized solar cell. Ceram Int 42:11136–11142CrossRefGoogle Scholar
  11. 11.
    Zhang X, Zhou M, Lei L (2005) Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods. Appl Catal A Gen 282:285–293CrossRefGoogle Scholar
  12. 12.
    Chiappim W, Testoni G E, Moraes R S, Pessoa R S, Saga J C, Origo F D, Vieira L, Maciel H S (2016) Structural, morphological and optical properties of TiO thin films grown by atomic layer deposition on fluorine doped tin oxide conductive glass. Vacuum 123:91–102Google Scholar
  13. 13.
    Saini KK, Sharma SD, Kar CM, Singh D, Sharma CP (2007) Structural and optical properties of TiO2 thin films derived by sol-gel dip coating process. J Non-Cryst Solids 353:2469–2473CrossRefGoogle Scholar
  14. 14.
    Diwald O, Thompson TL, Goralski EG, Walck SD, Yates JT (2004) The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. J Phys Chem B 108:52–57CrossRefGoogle Scholar
  15. 15.
    Linnik O, Shestopal N, Smirnova N, Eremenko A, Korduban O, Kandyba V, Kryshchuk T, Socol G, Stefan N, Popescu-Pelin G, Ristoscu C, Mihailescu IN (2015) Correlation between electronic structure and photocatalytic properties of non-metal doped TiO2/ZrO2 thin films obtained by pulsed laser deposition method. Vacuum 114:166–171CrossRefGoogle Scholar
  16. 16.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  17. 17.
    Tongwanichniyom S, Siriprom W, Manop D, Buranawong A, Kaewkhao J, Witit-Anun N (2013) Growth of anatase TiO2 thin film for photokilling of bacteria by DC reactive magnetron sputtering technique. Adv Mater Res 770:173–176CrossRefGoogle Scholar
  18. 18.
    Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts co-doped with antimony and chromium. J Phys Chem 106(19):5029–5034CrossRefGoogle Scholar
  19. 19.
    Qi K, Selvaraj R, Al Fahdi T, Al-Kindy S, Kimc Y, Wang GC, Tai CW, Sillanpaa M (2016) Enhanced photocatalytic activity of anatase-TiO2nanoparticles byfullerene modification: a theoretical and experimental study. Appl Surf Sci 387:750–758CrossRefGoogle Scholar
  20. 20.
    Guo Y, Zhang XW, Weng WH, Han GR, Han W (2007) Structure and properties of nitrogen-doped titanium dioxide thin films grown by atmospheric pressure chemical vapor deposition author links open overlay panel. Thin Solid Films 515:7117–7121CrossRefGoogle Scholar
  21. 21.
    Zarubica A, Vasic M, Antonijevic MD, Randelovic M, Momcilovic M, Krstic J (2014) Design and photocatalytic ability of ordered mesoporous TiO2 thin films. Mater Res Bull 57:146–151CrossRefGoogle Scholar
  22. 22.
    Kaleji BK, Sarraf-Mamoory R, Fujishima A (2012) Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films. Mater Chem Phys 132:210–215CrossRefGoogle Scholar
  23. 23.
    Yogi C, Kojima K, Wada N, Tokumoto H, Takai T, Mizoguchi T, Tamiaki H (2008) Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film. Thin Solid Films 516:5581–5884CrossRefGoogle Scholar
  24. 24.
    Assakera IB, Gannounia M, Naceura JB, Almessiereb MA, Al-Otaibib AL, Ghribb T, Shenc S, Chtouroua R (2015) Electrodeposited ZnIn2S4 onto TiO2 thin films for semiconductor-sensitized photocatalytic and photoelectrochemical applications. Appl Surf Sci 351:927–934CrossRefGoogle Scholar
  25. 25.
    Bensouicia F, Bououdinab M, Dakhel AA, Tala-Ighila Tounanea RM, Iratnia A, Souierd T, Liu S, Caic W (2017) Optical, structural and photocatalysis properties of cu-doped TiO2 thin films. Appl Surf Sci 395:110–116CrossRefGoogle Scholar
  26. 26.
    Pérez-González M, Tomás SA, Morales-Luna M, Arvizu MA, Tellez-Cruz MM (2015) Optical, structural, and morphological properties of photocatalytic TiO2–ZnO thin films synthesized by the sol–gel process. Thin Solid Films 594:304–309CrossRefGoogle Scholar
  27. 27.
    Shen H, Mi L, Xu P, Shen W, Wang PN (2007) Visible Light Photocatalysis of Nitrojen DopedTiO2 Nanoparticulate Films Prepared by Low Energy Ion Implantation. Appl Surf Sci 253(17):7024–7028Google Scholar
  28. 28.
    Nair PB, Maneeshya LV, Justinvictor VB, Daniel GP, Joy K, Thomas PV (2014) Evolution of structural and optical properties of photocatalytic Fe doped TiO2 thin films prepared by RF magnetron sputtering. Aip Conf Proc 1576:79CrossRefGoogle Scholar
  29. 29.
    Stefanov B, Österlund L (2014) Tuning the photocatalytic activity of anatase TiO2 thin films by modifying the preferred <001> grain orientation with reactive DC magnetron sputtering. Coatings 4:587–601CrossRefGoogle Scholar
  30. 30.
    Zeng XG, Zhuang J, Gong M, Zheng XW, Li MT (2012) Study on nano-tio2film prepared by hydrothermal method in toluene-hydrochloric acid-water system. Adv Mat Res 610–613Google Scholar
  31. 31.
    Cheng J, Chen J, Lin W, Liu Y, Kong Y (2015) Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Appl Surf Sci 332:573–580CrossRefGoogle Scholar
  32. 32.
    Lu C, Zhang L, Zhang Y, Liu S (2016) Electrodeposition of TiO2/CdSe heterostructure films and photocatalytic degradation of methylene blue. Mater Lett 185:342–345CrossRefGoogle Scholar
  33. 33.
    Vallejo W, Diaz-Uribe C, Cantillo A (2015) Methylene blue photocatalytic degradation under visible İrradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy-phthalocyanines. J Photochem Photobiol A 299:80–86CrossRefGoogle Scholar
  34. 34.
    López A, Acosta D, Martínez AI, Santiago J (2010) Nanostructured low crystallized titanium dioxide thin films with good photocatalytic activity. Powder Technol 202:111–117CrossRefGoogle Scholar
  35. 35.
    Li D, Zhang J, Shao L, Chen C, Liu G, Yang Y (2011) Preparation and photocatalytic properties of nanometer TiO2 thin films by improved ultrasonic spray pyrolysis. Rare Metals 30:233–237CrossRefGoogle Scholar
  36. 36.
    Arunachalam A, Dhanapandian S, Manoharan C, Sivakumar G (2015) Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 138:105–112CrossRefGoogle Scholar
  37. 37.
    Anderson A, Binions R (2016) A preferential precursor for Photocatalytically active titanium dioxide thin films: titanium Bis-ammonium Lactato Dihydroxide as an alternative to titanium tetra Iso-Propoxide. Polyhedron 118:81–90CrossRefGoogle Scholar
  38. 38.
    Mondal S, Basak D (2016) Defect controlled tuning of the ratio of ultraviolet to visible light emission in TiO2 thin films. J Lumin 179:480–486CrossRefGoogle Scholar
  39. 39.
    Eufinger K, Poelman D, Poelman H, De Gryse R, Marin G.B (2009) TiO2 thin films for photocatalytic applications. Thin Solid Films: Process and Applications 189–227Google Scholar
  40. 40.
    Patil MK, Shaikh S, Ganesh I (2015) Recent advances on TiO2 thin film based photocatalytic applications (a review). Curr Nanosci 11:1–15CrossRefGoogle Scholar
  41. 41.
    Islam SZ, Reed A, Kim DY, Rankin SE (2016) N2/Ar plasma induced doping of ordered mesoporous TiO2 thin films for visible light active photocatalysis. Microporous Mesoporous Mater 220:120–128CrossRefGoogle Scholar
  42. 42.
    Conde-Gallardoa A, Guerreroa M, Castilloa N, Sotoa AB, Fragosoa R, Cabanas-Moreno JG (2005) TiO2 anatase thin films deposited by spray pyrolysis of an aerosol of titanium diisopropoxide. Thin Solid Films 473:68–73CrossRefGoogle Scholar
  43. 43.
    Benramdane N, Murad WA, Misho RH, Ziane M, Kebbab Z (1997) A chemical method for the preparation of thin films of CdO and ZnO. Mater Chem Phys 48:119–123CrossRefGoogle Scholar
  44. 44.
    Vigil O, Cruz F, Acevedo AM, Puente GC, Vaillant L, Santana G (2001) Structural and optical properties of annealed CdO thin films prepared by spray pyrolysis. Mater Chem Phys 68:249–252CrossRefGoogle Scholar
  45. 45.
    Kurtaran S, Akyuz I, Atay F (2013) Evaluation of optical parameters and characterization of ultrasonically sprayed MgO films by spectroscopic ellipsometry. Appl Surf Sci 265:709–713CrossRefGoogle Scholar
  46. 46.
    Atay F, Bilgin V, Akyuz I, Ketenci E, Kose S (2010) Optical characterization of SnO2:F films by spectroscopic ellipsometry. J Non-Cryst Solids 356:2192–2197CrossRefGoogle Scholar
  47. 47.
    Supasai T, Henjongchom N, Tang IM, Deng F, Rujisamphan N (2016) Compact nanostructured TiO2 deposited by aerosol spray pyrolysis for the hole-blocking layer in a CH3NH3PbI3 perovskite solar cell. Sol Energy 136:515–524CrossRefGoogle Scholar
  48. 48.
    Yoldas BE, Partlow DP (1985) Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin Solid Films 129:1–14CrossRefGoogle Scholar
  49. 49.
    Pereira ALJ, Filho PNL, Acuna J, Brandt IS, Pasa AA, Zanatta AR, Vilcarromero J, Beltran A, Dias da Silva JH (2012) Enhancement of optical absorption by modulation of the oxygen flow of TiO2 films deposited by reactive sputtering. J Appl Phys 111:113513 1–11CrossRefGoogle Scholar
  50. 50.
    Raut NC, Mathews T, Chandramohan P, Srinivasan MP, Dash S, Tyagi AK (2011) Effect of temperature on the growth of TiO2 thin films synthesized by spray pyrolysis: structural, compositional and optical properties. Mater Res Bull 46:2057–2063CrossRefGoogle Scholar
  51. 51.
    Paraguay DF, Estrada LW, Acosta NDR, Andrade E, Yoshida MM (1999) Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 350:192–202CrossRefGoogle Scholar
  52. 52.
    Atay F, Akyuz I, Soyleyici Çergel M, Erdogan B (2018) Investigation of (004) oriented single anatase TiO2 films. JEM 47:1601–1609CrossRefGoogle Scholar
  53. 53.
    Kernazhitsky L, Shymanovska V, Gavrilko T, Naumov V, Fedorenko L, Kshnyakin V, Baran J (2014) Room temperature photoluminescence of anatase and rutile TiO2 powders. J Lumin 146:199–204CrossRefGoogle Scholar
  54. 54.
    Liu B, Wen L, Zhao X (2007) The photoluminescence spectroscopic study of anatase TiO2 prepared by magnetron sputtering. Mater Chem Phys 106:350–353CrossRefGoogle Scholar
  55. 55.
    Daude N, Gout C, Jouanin C (1977) Electronic band structure of titanium dioxide. Phys Rev B 15:3229–3235CrossRefGoogle Scholar
  56. 56.
    Baiju KV, Zachariah A, Shukla S, Biju S, Reddy MLP, Warrier KGK (2009) Correlating photoluminescence and photocatalytic activity of mixed-phase nanocrystalline titania. Catal Lett 130:130–136CrossRefGoogle Scholar
  57. 57.
    Tripathi AK, Mathpal MC, Kumar P, Agrahari V, Singh MK, Mishra SK, Ahmad MM, Agarwal A (2015) Photoluminescence and photoconductivity of Ni doped titania nanoparticles. Adv Mater Lett 6:201–208CrossRefGoogle Scholar
  58. 58.
    Lai X, Guo Q, Min BK, Goodman DW (2001) Synthesis and characterization of titanis films on Mo (110). Surf Sci 487:1–8CrossRefGoogle Scholar
  59. 59.
    Xiong LB, Li JL, Yang B, Yu Y (2012) Ti3+ in the surface of titanium dioxide: generation, Properties and photocatalytic application. Hindawi Publishing Corporation. J Nanomater 2012:1–13. CrossRefGoogle Scholar
  60. 60.
    Aghareed M T and Dina S H (2015) Synthesis of TiO2 nanoparticles and their photocatalytic activity for methylene blue. Am J Nanomaterials 3(2): 57-63Google Scholar
  61. 61.
    Aghareed MT, Dina SH (2015) Synthesis of TiO2 nanoparticles and their photocatalytic activity for methylene blue. Am J Nanomater 3(2):57–63Google Scholar
  62. 62.
    Akyol A, Yatmaz HC, Bayramoglu M (2004) Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Appl Catal B 54:19–24CrossRefGoogle Scholar
  63. 63.
    Mukhlish MZB, Najnin F, Rahman MM, Uddin MJ (2013) Photocatalytic degradation of different dyes using TiO2 with high surface area: a kinetic study. J Sci Res 5:301–314CrossRefGoogle Scholar
  64. 64.
    Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes inaqueous solution: kinetic and mechanistic İnvestigations. Appl Catal B 49:1–14CrossRefGoogle Scholar
  65. 65.
    Sajan CP, Wageh S, Al-Ghamdi AA, Yu J, Cao S (2016) TiO2 Nanosheets with exposed {001} facets for photocatalytic application. Nano Res 9:3–27CrossRefGoogle Scholar
  66. 66.
    Fang WQ, Gong XQ, Yang HG (2008) On the unusual properties of anatase TiO2 exposed by highly reactive facets. J Phys Chem Lett 2:725–734CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Müge Söyleyici Cergel
    • 1
    Email author
  • Ersin Demir
    • 2
  • Ferhunde Atay
    • 3
  1. 1.Program of Medical Imaging Technologies, Health Services Vocational High Schoolİstanbul Okan UniversityIstanbulTurkey
  2. 2.Department of Food Engineering, Faculty of Engineeringİstanbul Okan UniversityIstanbulTurkey
  3. 3.Department of Physics, Art and Science FacultyEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations