Advertisement

Ionics

, Volume 25, Issue 9, pp 4273–4283 | Cite as

Facile construction of N-doped Mo2C@CNT composites with 3D nanospherical structures as an efficient electrocatalyst for hydrogen evolution reaction

  • Yali Wang
  • Raja Arumugam Senthil
  • Junqing PanEmail author
  • Yanzhi Sun
  • Sedahmed Osman
  • Abrar Khan
  • Xiaoguang Liu
Original Paper
  • 105 Downloads

Abstract

In this study, we synthesized nitrogen-doped Mo2C@carbon nanotube (N-Mo2C@CNT) composites via a facile one-pot method of solvothermal followed by calcination. The SEM and TEM results of N-Mo2C@CNT composites show that the sphere-shaped N-Mo2C is covered by CNTs. In addition, the electrocatalytic performances of the as-obtained N-Mo2C@CNT composites were examined towards the hydrogen evolution reaction (HER) in acidic media. It is revealed that the N-Mo2C@CNT composite with optimum content of CNTs (30 mg) exhibits an excellent catalytic activity with less overpotential of 183 mV at 10 mA cm−2 and smaller Tafel slope of 73.95 mV dec−1 as compared with pure Mo2C. Furthermore, it has a good cycling stability after 1000 cycles. This enhanced activity due to the creation of more active sites, large specific surface area by better synergistic effect between the N-Mo2C and CNT. Consequently, the N-Mo2C@CNT composite is a viable alternative to the noble metal electrocatalysts for HER.

Keywords

Molybdenum carbide Carbon nanotubes Synergetic effect Electrocatalysis Hydrogen evolution reaction 

Notes

Funding information

This work is financially supported by the National Natural Science Foundation of China (21676022 and 21706004) and the Fundamental Research Funds for the Central Universities (BHYC1701A and JD1701).

Supplementary material

11581_2019_2985_MOESM1_ESM.doc (1.8 mb)
ESM 1 (DOC 1864 kb)

References

  1. 1.
    Zeng M, Li YG (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:14942–14962CrossRefGoogle Scholar
  2. 2.
    Li YM, Mu LQ, Hu YS, Li H, Chen LQ, Huang XJ (2016) Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater 2:139–145CrossRefGoogle Scholar
  3. 3.
    Wang J, Xu F, Jin HY, Chen YQ, Wang Y (2017) Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv Mater 29:1605838CrossRefGoogle Scholar
  4. 4.
    Zhou WJ, Jia J, Lu J, Yang LJ, Hou DM, Li GQ, Chen SW (2016) Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28:29–43CrossRefGoogle Scholar
  5. 5.
    Wang JH, Cui W, Liu Q, Xing ZC, Asiri AM, Sun XP (2016) Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 28:215–230CrossRefGoogle Scholar
  6. 6.
    Liu XJ, Li WY, Zou SZ (2018) Cobalt and nitrogen-codoped ordered mesoporous carbon as highly efficient bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. J Mater Chem A 6:17067–17074CrossRefGoogle Scholar
  7. 7.
    Morales-Guio CG, Stern LA, Hu X (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43:6555–6569CrossRefGoogle Scholar
  8. 8.
    Dou S, Wang X, Wang S (2018) Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 3:1800211CrossRefGoogle Scholar
  9. 9.
    Zhang J, Liu Y, Xia B, Sun C, Liu Y, Liu P, Gao D (2018) Facile one-step synthesis of phosphorus-doped CoS2 as efficient electrocatalyst for hydrogen evolution reaction. Electrochim Acta 259:955–961CrossRefGoogle Scholar
  10. 10.
    Shi Z, Wang Y, Lin H, Zhang H, Shen M, Xie S, Zhang Y, Gao Q, Tang Y (2016) Porous nano MoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. J Mater Chem A 4:6006–6013CrossRefGoogle Scholar
  11. 11.
    Zhao Y, Kamiya K, Hashimoto K, Nakanishi S (2015) In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst. J Am Chem Soc 137:110–113CrossRefGoogle Scholar
  12. 12.
    Men B, Sun Y, Li M, Hu C, Zhang M, Wang L, Tang Y, Chen Y, Wan P, Pan J (2016) Hierarchical metal-free nitrogen-doped porous graphene/carbon composites as an efficient oxygen reduction reaction catalyst. ACS Appl Mater Interfaces 8:1415–1423CrossRefGoogle Scholar
  13. 13.
    Zeng Y, Wang Y, Huang G, Chen C, Huang L, Chen R, Wang S (2018) Porous CoP nanosheets converted from layered double hydroxides with superior electrochemical activity for hydrogen evolution reaction at wide pH range. Chem Commun 54:1465–1468CrossRefGoogle Scholar
  14. 14.
    Ma L, Ting LRL, Molinari V, Giordano C, Yeo BS (2015) Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J Mater Chem A 3:8361–8368CrossRefGoogle Scholar
  15. 15.
    Murthy AP, Govindarajan D, Theerthagiri J, Madhavan J, Parasuraman K (2018) Metal-doped molybdenum nitride films for enhanced hydrogen evolution in near-neutral strongly buffered aerobic media. Electrochim Acta 283:1525–1533CrossRefGoogle Scholar
  16. 16.
    Yue Q, Wan Y, Sun Z, Wu X, Yuan Y, Du P (2015) MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light. J Mater Chem A 3:16941–16947CrossRefGoogle Scholar
  17. 17.
    Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang JY, Lim KH, Wang X (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 7:2624–2629CrossRefGoogle Scholar
  18. 18.
    Ma FX, Wu HB, Xia BY, Xu CY, Lou XW (2015) Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew Chem Int Ed 54:15395–15399CrossRefGoogle Scholar
  19. 19.
    Bukola S, Merzougui B, Creager SE, Qamar M, Pederson LR, Noui-Mehidi MN (2016) Nanostructured cobalt-modified molybdenum carbides electrocatalysts for hydrogen evolution reaction. Int J Hydrog Energy 41:22899–22912CrossRefGoogle Scholar
  20. 20.
    Yang L, Yu J, Wei Z, Li G, Cao L, Zhou W (2017) Co-N-doped MoO2 nanowires as efficient electrocatalysts for the oxygen reduction reaction and hydrogen evolution reaction. Nano Energy 41:772–779CrossRefGoogle Scholar
  21. 21.
    Zhang X, Du Z, Luo X, Sun A, Wu Z, Wang D (2018) Template-free fabrication of hierarchical MoS2/MoO2 nanostructures as efficient catalysts for hydrogen production. Appl Surf Sci 433:723–729CrossRefGoogle Scholar
  22. 22.
    Wu A, Tian C, Yan H, Jiao Y, Yan Q, Yang G, Fu H (2016) Hierarchical MoS2@MoP core-shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad pH range. Nanoscale 8:11052–11059CrossRefGoogle Scholar
  23. 23.
    Liu YR, Li X, Han GQ, Dong B, Hu WH, Shang X, Chai YM, Liu YQ, Liu CG (2017) Template-assisted synthesis of highly dispersed MoS2 nanosheets with enhanced activity for hydrogen evolution reaction. Int J Hydrog Energy 42:2054–2060CrossRefGoogle Scholar
  24. 24.
    Sun X, Huo J, Yang Y, Xu L, Wang S (2017) The Co3O4 nanosheet array as support for MoS2 as highly efficient electrocatalysts for hydrogen evolution reaction. J Energy Chem 26:1136–1139CrossRefGoogle Scholar
  25. 25.
    Lin H, Liu N, Shi Z, Guo Y, Tang Y, Gao Q (2016) Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv Fun Mater 26:5590–5598CrossRefGoogle Scholar
  26. 26.
    Jia J, Xiong T, Zhao L, Wang F, Liu H, Hu R, Zhou J, Zhou W, Chen S (2017) Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11:12509–12518CrossRefGoogle Scholar
  27. 27.
    Wan C, Leonard BM (2015) Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction. Chem Mater 27:4281–4288CrossRefGoogle Scholar
  28. 28.
    Lin H, Shi Z, He S, Yu X, Wang S, Gao Q, Tang Y (2016) Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem Sci 7:3399–3405CrossRefGoogle Scholar
  29. 29.
    Zhang K, Zhao Y, Fu D, Chen Y (2015) Molybdenum carbide nanocrystals embedded N-doped carbon nanotubes as electrocatalysts for hydrogen generation. J Mater Chem A 3:5783–5788CrossRefGoogle Scholar
  30. 30.
    Wu HB, Xia BY, Yu L, Yu XY, Lou XW (2015) Porous molybdenum carbide nanooctahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun 6:6512CrossRefGoogle Scholar
  31. 31.
    Ojha K, Saha S, Kolev H, Kumar B, Ganguli AK (2016) Composites of graphene-Mo2C rods: highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta 193:268–274CrossRefGoogle Scholar
  32. 32.
    Ge C, Jiang P, Cui W, Pu Z, Xing Z, Asiri AM, Obaid AY, Sun X, Tian J (2014) Shape-controllable synthesis of Mo2C nanostructures as hydrogen evolution reaction electrocatalysts with high activity. Electrochim Acta 134:182–186CrossRefGoogle Scholar
  33. 33.
    Liao L, Wang S, Xiao J, Bian X, Zhang Y, Scanlon MD, Hu X, Liu B, Girault HH (2014) A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ Sci 7:387–392CrossRefGoogle Scholar
  34. 34.
    Li JS, Wang Y, Liu CH, Li SL, Wang YG, Dong LZ, Dai ZH, Li YF, Lan YQ (2016) Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat Commun 7:11204CrossRefGoogle Scholar
  35. 35.
    Xiong T, Jia J, Wei Z, Zeng L, Deng Y, Zhou W, Chen S (2019) N-doped carbon-wrapped MoxC heterophase sheets for high-efficiency electrochemical hydrogen production. Chem Eng J 358:362–368CrossRefGoogle Scholar
  36. 36.
    Yan Y, Ge XM, Liu ZL, Wang JY, Lee JM, Wang X (2013) Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 5:7768–7771CrossRefGoogle Scholar
  37. 37.
    Liang J, Ding R, Wu Y, Chen Y, Wu K, Meng Y, Yang M, Wang Y (2016) Effective conversion of heteroatomic model compounds in microalgae-based bio-oils to hydrocarbons over β-Mo2C/CNTs catalyst. J Mol Catal A Chem 411:95–102CrossRefGoogle Scholar
  38. 38.
    Wu L, Xu X, Zhao Y, Zhang K, Sun Y, Wang T, Wang Y, Zhong W, Du Y (2017) Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution. Appl Surf Sci 425:470–477CrossRefGoogle Scholar
  39. 39.
    Wang S, Liao L, Shi Z, Xiao J, Gao Q, Zhang Y, Liu B, Tang Y (2016) Mo2C/reduced-graphene-oxide nanocomposite: an efficient electrocatalyst for the hydrogen evolution reaction. ChemElectroChem 3:2110–2115CrossRefGoogle Scholar
  40. 40.
    Liu YR, Shang X, Gao WK, Dong B, Li X, Li XH, Zhao JC, Chai YM, Liu YQ, Liu CG (2017) In-situ sulfurized CoMoS/CoMoO4 shell-core nanorods supported on N-doped reduced graphene oxide (NRGO) as efficient electrocatalyst for hydrogen evolution reaction. J Mater Chem A 5:2885–2896CrossRefGoogle Scholar
  41. 41.
    Wang J, Chen W, Wang T, Bate N, Wang C, Wang E (2018) A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion- exchange resin synthesis for efficient electrocatalytic hydrogen reduction. Nano Res 11:4535–4548CrossRefGoogle Scholar
  42. 42.
    Hu WH, Shang X, Xue J, Dong B, Chi JQ, Han GQ, Liu YR, Li X, Yan KL, Chai YM, Liu CG (2017) Activating MoS2/CNs by tuning (001) plane as efficient electrocatalysts for hydrogen evolution reaction. Int J Hydrog Energy 42:2088–2095CrossRefGoogle Scholar
  43. 43.
    Zhang K, Zhao Y, Zhang S, Yu H, Chen Y, Gao P, Zhu C (2014) MoS2 nanosheet/Mo2C-embedded N-doped carbon nanotubes: synthesis and electrocatalytic hydrogen evolution performance. J Mater Chem A 2:18715–18719CrossRefGoogle Scholar
  44. 44.
    Li DJ, Maiti UN, Lim J, Choi DS, Lee WJ, Oh Y, Lee GY, Kim SO (2014) Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett 14:1228–1233CrossRefGoogle Scholar
  45. 45.
    Liu Y, Yu G, Li GD, Sun Y, Asefa T, Chen W, Zou XX (2015) Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem Inter Ed 54:10752–10757CrossRefGoogle Scholar
  46. 46.
    Jiang R, Fan J, Hu L, Dou Y, Mao X, Wang D (2018) Electrochemically synthesized N-doped molybdenum carbide nanoparticles for efficient catalysis of hydrogen evolution reaction. Electrochim Acta 261:578–587CrossRefGoogle Scholar
  47. 47.
    Chen YY, Zhang Y, Jiang WJ, Zhang X, Dai Z, Wan LJ, Hu JS (2016) Pomegranate-like N,P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano 10:8851–8860CrossRefGoogle Scholar
  48. 48.
    Li R, Yang L, Xiong T, Wu Y, Cao L, Yuan D, Zhou WJ (2017) Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J Power Sources 356:133–139CrossRefGoogle Scholar
  49. 49.
    Wang D, Liu T, Wang J, Wu Z (2018) N, P (S) Co-doped Mo2C/C hybrid electrocatalysts for improved hydrogen generation. Carbon 139:845–852CrossRefGoogle Scholar
  50. 50.
    Chi JQ, Shang X, Lu SS, Dong B, Liu ZZ, Yan KL, Gao WK, Chai YM, Liu CG (2017) Mo2C@NC@MoSx porous nanospheres with sandwich shell based on MoO4 2--polymer precursor for efficient hydrogen evolution in both acidic and alkaline media. Carbon 124:555–564CrossRefGoogle Scholar
  51. 51.
    Liu Y, Liu J, Li Z, Fan X, Li Y, Zhang F, Zhang G, Peng W, Wang S (2018) Exfoliated MoS2 with porous graphene nanosheets for enhanced electrochemical hydrogen evolution. Int J Hydrog Energy 43:13946–13952CrossRefGoogle Scholar
  52. 52.
    Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y (2014) Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci 5:4615–4620CrossRefGoogle Scholar
  53. 53.
    Mir RA, Pandey OP (2018) Influence of graphitic/amorphous coated carbon on HER activity of low temperature synthesized β-Mo2C@C nanocomposites. Chem Eng J 348:1037–1048CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yali Wang
    • 1
  • Raja Arumugam Senthil
    • 1
  • Junqing Pan
    • 1
    Email author
  • Yanzhi Sun
    • 1
  • Sedahmed Osman
    • 1
  • Abrar Khan
    • 1
  • Xiaoguang Liu
    • 1
  1. 1.State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Engineering Center for Hierarchical CatalystsBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations