Advertisement

Ionics

pp 1–13 | Cite as

Variations in anion-exchange membrane properties with ionic resin moisture

  • Pavel Bulejko
  • Eliška StránskáEmail author
Original Paper
  • 19 Downloads

Abstract

Moisture content in a strongly hydrophilic ion-exchange resin is one of the key parameters in commercial production of ion-exchange membranes. This work tried to clarify the effect of moisture content in an anion-exchange resin (AER) on the structure and final properties of anion-exchange membranes (AEMs). The AER was modified to 2, 4, 6, and 8% of moisture and then ground. The modified AER was blended with polyethylene and extruded to prepare AEMs, some of which were hot pressed. The microstructure and electrochemical properties of the AEMs were then determined. Variations in electrochemical properties showed no definite moisture effect except ion-exchange capacity, which decreased as AER moisture increased. The differences in changes in electrochemical properties were most apparent between pressed and non-pressed AEMs. Permselectivity and ionic resistance behaved similarly with AEM fixed ion concentration. The ionic resistance decreased with increasing fixed ion concentration. The same was true for permselectivity which is, however, in contradiction to Donnan theory.

Keywords

Anion-exchange membrane Moisture Permselectivity Electrical resistance Microstructure 

Notes

Acknowledgements

The work was carried out within the framework of the project No. LO1418 “Progressive development of Membrane Innovation Centre” supported by the program NPU I Ministry of Education Youth and Sports of the Czech Republic, using the infrastructure Membrane Innovation Centre.

Supplementary material

11581_2019_2984_MOESM1_ESM.pdf (448 kb)
ESM 1 (PDF 448 kb)

References

  1. 1.
    Ben Sik Ali M, Mnif A, Hamrouni B, Dhahbi M (2010) Electrodialytic desalination of brackish water: effect of process parameters and water characteristics. Ionics 16:621–629.  https://doi.org/10.1007/s11581-010-0441-2 CrossRefGoogle Scholar
  2. 2.
    Kaláb J, Palatý Z (2012) Electrodialysis of oxalic acid: batch process modeling. Chem Pap 66:1118–1123.  https://doi.org/10.2478/s11696-012-0232-5 CrossRefGoogle Scholar
  3. 3.
    Rottiers T, Bruggen V d B, Pinoy L (2017) Production of salicylic acid in a three compartment bipolar membrane electrodialysis configuration. J Ind Eng Chem 54:190–199.  https://doi.org/10.1016/j.jiec.2017.05.033 CrossRefGoogle Scholar
  4. 4.
    Dlask O, Václavíková N (2018) Electrodialysis with ultrafiltration membranes for peptide separation. Chem Pap 72:261–271.  https://doi.org/10.1007/s11696-017-0293-6 CrossRefGoogle Scholar
  5. 5.
    Bulejko P, Stránská E, Weinertová K (2017) Properties and structure of heterogeneous ion-exchange membranes after exposure to chemical agents. J Solid State Electrochem 21:111–124.  https://doi.org/10.1007/s10008-016-3341-1 CrossRefGoogle Scholar
  6. 6.
    Ben Sik Ali M, Mnif A, Hamrouni B (2018) Modelling of the limiting current density of an electrodialysis process by response surface methodology. Ionics 24:617–628.  https://doi.org/10.1007/s11581-017-2214-7 CrossRefGoogle Scholar
  7. 7.
    Káňavová N, Machuča L, Tvrzník D (2014) Determination of limiting current density for different electrodialysis modules. Chem Pap 68:324–329.  https://doi.org/10.2478/s11696-013-0456-z Google Scholar
  8. 8.
    Weinertova K, Honorato RS, Stranska E, Nedela D (2018) Comparison of heterogeneous anion-exchange membranes for nitrate ion removal from mixed salt solution. Chem Pap 72:469–478.  https://doi.org/10.1007/s11696-017-0299-0 CrossRefGoogle Scholar
  9. 9.
    Káňavová N, Krejčí A, Benedeková M, Doležel M, Machuča L (2015) Mass transfer examination in electrodialysis using limiting current measurements. Chem Pap 69:553–559.  https://doi.org/10.1515/chempap-2015-0062 Google Scholar
  10. 10.
    Singare PU, Lokhande RS (2012) Studies on ion-isotopic exchange reactions using nuclear grade ion exchange resins. Ionics 18:351–357.  https://doi.org/10.1007/s11581-011-0645-0 CrossRefGoogle Scholar
  11. 11.
    Singare PU (2016) Studies on kinetics and thermodynamics of ion adsorption reactions by applications of short-lived radioactive tracer isotopes. Ionics 22:1433–1443.  https://doi.org/10.1007/s11581-016-1651-z CrossRefGoogle Scholar
  12. 12.
    Svoboda M, Beneš J, Vobecká L, Slouka Z (2017) Swelling induced structural changes of a heterogeneous cation-exchange membrane analyzed by micro-computed tomography. J Membr Sci 525:195–201.  https://doi.org/10.1016/j.memsci.2016.10.046 CrossRefGoogle Scholar
  13. 13.
    Yamanaka T, Takeguchi T, Takahashi H, Ueda W (2009) Water transport during ion conduction in anion-exchange and cation-exchange membranes. J Electrochem Soc 156:B831–B835.  https://doi.org/10.1149/1.3129618 CrossRefGoogle Scholar
  14. 14.
    Smedley SB, Chang Y, Bae C, Hickner MA (2015) Measuring water hydrogen bonding distributions in proton exchange membranes using linear Fourier transform infrared spectroscopy. Solid State Ionics 275:66–70.  https://doi.org/10.1016/j.ssi.2015.03.020 CrossRefGoogle Scholar
  15. 15.
    Bulejko P, Stránská E, Weinertová K (2017) Electrochemical and mechanical stability of ion-exchange membranes in alkaline solution. Chem Pap 71:1303–1309.  https://doi.org/10.1007/s11696-016-0122-3 CrossRefGoogle Scholar
  16. 16.
    Hwang GS, Kaviany M, Gostick JT, Kientiz B, Weber AZ, Kim MH (2011) Role of water states on water uptake and proton transport in Nafion using molecular simulations and bimodal network. Polymer 52:2584–2593.  https://doi.org/10.1016/j.polymer.2011.03.056 CrossRefGoogle Scholar
  17. 17.
    Li YS, Zhao TS, Yang WW (2010) Measurements of water uptake and transport properties in anion-exchange membranes. Int J Hydrog Energy 35:5656–5665.  https://doi.org/10.1016/j.ijhydene.2010.03.026 CrossRefGoogle Scholar
  18. 18.
    Soldatov V, Zelenkovskii V, Kosandrovich E (2016) Hydration of ion exchangers: thermodynamics and quantum chemistry calculations. III. The state of the proton and water molecules in hydrogen form of sulfostyrene ion exchangers. React Funct Polym 102:156–164.  https://doi.org/10.1016/j.reactfunctpolym.2016.03.001 CrossRefGoogle Scholar
  19. 19.
    Soldatov V, Zelenkovskii V, Kosandrovich E (2016) Hydration of ion exchangers: thermodynamics and quantum chemistry calculations. II an improved variant of the predominant hydrates model. React Funct Polym 102:147–155.  https://doi.org/10.1016/j.reactfunctpolym.2016.03.014 CrossRefGoogle Scholar
  20. 20.
    Soldatov VS, Kosandrovich EG, Bezyazychnaya TV (2018) Hydration of ion exchangers: thermodynamics and quantum chemistry calculations. IV. The state of ions and water molecules in alkali forms of sulfostyrene resins. React Funct Polym 131:219–229.  https://doi.org/10.1016/j.reactfunctpolym.2018.07.010 CrossRefGoogle Scholar
  21. 21.
    Soldatov V, Pristavko S, Zelenkovskii V, Kosandrovich E (2013) Hydration of ion exchangers: thermodynamics and quantum chemistry calculations. React Funct Polym 73:737–744.  https://doi.org/10.1016/j.reactfunctpolym.2013.03.001 CrossRefGoogle Scholar
  22. 22.
    Roy A, Hickner MA, Lee H-S, Glass T, Paul M, Badami A, Riffle JS, McGrath JE (2017) States of water in proton exchange membranes: part a - influence of chemical structure and composition. Polymer 111:297–306.  https://doi.org/10.1016/j.polymer.2017.01.021 CrossRefGoogle Scholar
  23. 23.
    Herbst DC, Witten TA, Tsai T-H, Coughlin EB, Maes AM, Herring AM (2015) Water uptake profile in a model ion-exchange membrane: conditions for water-rich channels. J Chem Phys 142:114906.  https://doi.org/10.1063/1.4914512 CrossRefGoogle Scholar
  24. 24.
    Krisilova EV, Eliseeva TV, Oros GY (2011) Effect of amino acid sorption on formation of water clusters in ion-exchange membranes. Colloid J 73:72–75.  https://doi.org/10.1134/S1061933X11010091 CrossRefGoogle Scholar
  25. 25.
    Golubenko DV, Safronova EY, Ilyin AB, Shevlyakova NV, Tverskoi VA, Dammak L, Grande D, Yaroslavtsev AB (2017) Influence of the water state on the ionic conductivity of ion-exchange membranes based on polyethylene and sulfonated grafted polystyrene. Mater Chem Phys 197:192–199.  https://doi.org/10.1016/j.matchemphys.2017.05.015 CrossRefGoogle Scholar
  26. 26.
    Golubenko DV, Safronova EY, Ilyin AB, Shevlyakov NV, Tverskoi VA, Pourcelly G, Yaroslavtsev AB (2017) Water state and ionic conductivity of grafted ion exchange membranes based on polyethylene and sulfonated polystyrene. Mendeleev Commun 27:380–381.  https://doi.org/10.1016/j.mencom.2017.07.020 CrossRefGoogle Scholar
  27. 27.
    Neděla D, Křivčík J, Válek R, Stránská E, Marek J (2015) Influence of water content on properties of a heterogeneous bipolar membrane. Desalin Water Treat 56:3269–3272.  https://doi.org/10.1080/19443994.2014.981412 Google Scholar
  28. 28.
    Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951.  https://doi.org/10.1021/cr050182l CrossRefGoogle Scholar
  29. 29.
    Vandiver MA, Caire BR, Pandey TP, Li Y, Seifert S, Kusoglu A, Knauss DM, Herring AM, Liberatore MW (2016) Effect of hydration on the mechanical properties and ion conduction in a polyethylene-b-poly(vinylbenzyl trimethylammonium) anion exchange membrane. J Membr Sci 497:67–76.  https://doi.org/10.1016/j.memsci.2015.09.034 CrossRefGoogle Scholar
  30. 30.
    Aindow TT, O’Neill J (2011) Use of mechanical tests to predict durability of polymer fuel cell membranes under humidity cycling. J Power Sources 196:3851–3854.  https://doi.org/10.1016/j.jpowsour.2010.12.031 CrossRefGoogle Scholar
  31. 31.
    Macauley N, Alavijeh AS, Watson M, Kolodziej J, Lauritzen M, Knights S, Wang G, Kjeang E (2015) Accelerated membrane durability testing of heavy duty fuel cells. J Electrochem Soc 162:F98–F107.  https://doi.org/10.1149/2.0671501jes CrossRefGoogle Scholar
  32. 32.
    Collier A, Wang H, Zi Yuan X et al (2006) Degradation of polymer electrolyte membranes. Int J Hydrog Energy 31:1838–1854.  https://doi.org/10.1016/j.ijhydene.2006.05.006 CrossRefGoogle Scholar
  33. 33.
    Jahnke T, Futter G, Latz A, Malkow T, Papakonstantinou G, Tsotridis G, Schott P, Gérard M, Quinaud M, Quiroga M, Franco AA, Malek K, Calle-Vallejo F, Ferreira de Morais R, Kerber T, Sautet P, Loffreda D, Strahl S, Serra M, Polverino P, Pianese C, Mayur M, Bessler WG, Kompis C (2016) Performance and degradation of proton exchange membrane fuel cells: state of the art in modeling from atomistic to system scale. J Power Sources 304:207–233.  https://doi.org/10.1016/j.jpowsour.2015.11.041 CrossRefGoogle Scholar
  34. 34.
    Miyatake K, Furuya H, Tanaka M, Watanabe M (2012) Durability of sulfonated polyimide membrane in humidity cycling for fuel cell applications. J Power Sources 204:74–78.  https://doi.org/10.1016/j.jpowsour.2011.12.039 CrossRefGoogle Scholar
  35. 35.
    Khattra NS, Karlsson AM, Santare MH, Walsh P, Busby FC (2012) Effect of time-dependent material properties on the mechanical behavior of PFSA membranes subjected to humidity cycling. J Power Sources 214:365–376.  https://doi.org/10.1016/j.jpowsour.2012.04.065 CrossRefGoogle Scholar
  36. 36.
    Bulejko P, Stránská E (2018) The effect of initial moisture content of cation-exchange resin on the preparation and properties of heterogeneous cation-exchange membranes. Mater Chem Phys 205:470–479.  https://doi.org/10.1016/j.matchemphys.2017.11.049 CrossRefGoogle Scholar
  37. 37.
    Suqing Group: Poly(St-DVB) based gel type strong base anion exchange resins. http://www.suqing.com/Public/Uploads/56027e5bee1ec(1).jpg. Accessed 5 Jan 2019
  38. 38.
    Jeong SK, Lee JS, Woo SH, Seo J, Min B (2015) Characterization of anion exchange membrane containing epoxy ring and C–Cl bond quaternized by various amine groups for application in fuel cells. Energies 8:7084–7099.  https://doi.org/10.3390/en8077084 CrossRefGoogle Scholar
  39. 39.
    Namdari M, Kikhavani T, Ashrafizadeh SN (2017) Synthesis and characterization of an enhanced heterogeneous cation exchange membrane via nanoclay. Ionics 23:1745–1758.  https://doi.org/10.1007/s11581-017-2009-x CrossRefGoogle Scholar
  40. 40.
    Geise GM, Hickner MA, Logan BE (2013) Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Appl Mater Interfaces 5:10294–10301.  https://doi.org/10.1021/am403207w CrossRefGoogle Scholar
  41. 41.
    Mokhtar M, Dickson SE, Kim Y, Mekky W (2018) Preparation and characterization of ion selective membrane and its application for Cu2+ removal. J Ind Eng Chem 60:475–484.  https://doi.org/10.1016/j.jiec.2017.11.035 CrossRefGoogle Scholar
  42. 42.
    Hosseini SM, Hamidi AR, Moghadassi AR, Koranian P, Madaeni SS (2015) Fabrication of novel mixed matrix electrodialysis heterogeneous ion-exchange membranes modified by ilmenite (FeTiO3): electrochemical and ionic transport characteristics. Ionics 21:437–447.  https://doi.org/10.1007/s11581-014-1186-0 CrossRefGoogle Scholar
  43. 43.
    Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interf Sci 119:97–130.  https://doi.org/10.1016/j.cis.2005.09.005 CrossRefGoogle Scholar
  44. 44.
    Stránská E, Weinertová K, Neděla D, Křivčík J (2018) Preparation and basic characterization of heterogeneous weak acid cation exchange membrane. Chem Pap 72:89–98.  https://doi.org/10.1007/s11696-017-0260-2 CrossRefGoogle Scholar
  45. 45.
    Křivčík J, Neděla D, Hadrava J, Brožová L (2015) Increasing selectivity of a heterogeneous ion-exchange membrane. Desalin Water Treat 56:3160–3166.  https://doi.org/10.1080/19443994.2014.980970 Google Scholar
  46. 46.
    Křivčík J, Neděla D, Válek R (2015) Ion-exchange membrane reinforcing. Desalin Water Treat 56:3214–3219.  https://doi.org/10.1080/19443994.2014.981411 Google Scholar
  47. 47.
    ISO 527-3:2018 Plastics - Determination of tensile properties - Part 3: Test conditions for films and sheetsGoogle Scholar
  48. 48.
    Vyas PV, Shah BG, Trivedi GS, Ray P, Adhikary SK, Rangarajan R (2001) Characterization of heterogeneous anion-exchange membrane. J Membr Sci 187:39–46.  https://doi.org/10.1016/S0376-7388(00)00613-X CrossRefGoogle Scholar
  49. 49.
    Stránská E, Zárybnická L, Weinertová K, Neděla D, Křivčík J (2016) Anisotropy of Mechanical Properties of Heterogeneous Ion Exchange Membrane (In Czech). Chem Listy 110:498–503. http://www.chemicke-listy.cz/ojs3/index.php/chemicke-listy/article/view/182
  50. 50.
    Kim YS, Einsla B, Sankir M, Harrison W, Pivovar BS (2006) Structure–property–performance relationships of sulfonated poly(arylene ether sulfone)s as a polymer electrolyte for fuel cell applications. Polymer 47:4026–4035.  https://doi.org/10.1016/j.polymer.2006.02.032 CrossRefGoogle Scholar
  51. 51.
    Geise GM, Cassady HJ, Paul DR, Logan BE, Hickner MA (2014) Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys Chem Chem Phys 16:21673–21681.  https://doi.org/10.1039/C4CP03076A CrossRefGoogle Scholar
  52. 52.
    Geise GM, Falcon LP, Freeman BD, Paul DR (2012) Sodium chloride sorption in sulfonated polymers for membrane applications. J Membr Sci 423–424:195–208.  https://doi.org/10.1016/j.memsci.2012.08.014 CrossRefGoogle Scholar
  53. 53.
    Komkova EN, Stamatialis DF, Strathmann H, Wessling M (2004) Anion-exchange membranes containing diamines: preparation and stability in alkaline solution. J Membr Sci 244:25–34.  https://doi.org/10.1016/j.memsci.2004.06.026 CrossRefGoogle Scholar
  54. 54.
    Bauer B, Strathmann H, Effenberger F (1990) Anion-exchange membranes with improved alkaline stability. Desalination 79:125–144.  https://doi.org/10.1016/0011-9164(90)85002-R CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical EngineeringBrno University of TechnologyBrnoCzech Republic
  2. 2.Membrain s.r.oStráž pod RalskemCzech Republic

Personalised recommendations