, Volume 25, Issue 9, pp 4243–4249 | Cite as

Low cost ionic liquid electrolytes for rechargeable aluminum/graphite batteries

  • Fangyu Gan
  • Kanghua ChenEmail author
  • Na Li
  • Yu Wang
  • Yi Shuai
  • Xuan He
Original Paper


Rechargeable aluminum batteries are promising large-scale energy storage candidates due to the high natural earth abundance and high theoretical volumetric capacity of Al metal. However, they face many problems, including a limited lifetime, rate performance, and high electrolyte cost. Herein, we have designed a high-performance Al rechargeable battery using a graphite cathode and an economical AlCl3/Et3NHCl ionic liquid electrolyte. Based on the high conductivity of the AlCl3/Et3NHCl electrolyte, the battery achieved a reversible capacity of 96 mAh g−1 at 100 mA g−1, which is even higher than that of the battery using an AlCl3/urea electrolyte (89 mAh g−1). Furthermore, almost no capacity attenuation was observed, with AlCl3/Et3NHCl electrolyte having a capacity of 64 mAh g−1 after 1000 cycles, at 1000 mA g−1, while the AlCl3/urea electrolyte had a capacity of only 24 mAh g−1. Therefore, the aluminum/ graphite battery using AlCl3/Et3NHCl ionic liquid electrolyte with a high specific capacity and good long-term cycling stability is a promising candidate for future high-performance, large-scale energy storage devices.


Graphite cathode AlCl3/Et3NHCl ionic liquid Al/graphite batteries 


Funding information

This work was supported by National Key Research and Development Program of China (No. 2016YFB0300801), Major Research Equipment Development Projects of National Natural Science Foundation of China (No. 51327902).


  1. 1.
    Latha TJ, Jayanti S (2014) Hydrodynamic analysis of flow fields for redox flow batteries applications [J]. J Appl Electrochem 44(9):995–1006CrossRefGoogle Scholar
  2. 2.
    Chung SH, Manthiram A (2014) High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator [J]. J Phys Chem Lett 5(11):1978CrossRefPubMedGoogle Scholar
  3. 3.
    Shuai Y, Zhang ZZ et al (2019) Highly stable lithium plating by a multifunctional electrolyte additive in lithium-sulfurized polyacrylonitrile battery [J]. Chem Commun 55:2376–2379CrossRefGoogle Scholar
  4. 4.
    Hao Z, Yuan L, Li Z et al (2016) High performance lithium-sulfur batteries with a facile and effective dual functional separator [J]. Electrochim Acta 200:197–203CrossRefGoogle Scholar
  5. 5.
    Abedin SZE, Giridhar P, Schwab P et al (2010) Electrodeposition of nanocrystalline aluminium from a chloroaluminate ionic liquid [J]. Electrochem Commun 12(8):1084–1086CrossRefGoogle Scholar
  6. 6.
    Elia GA, Hasa I, Greco G et al (2017) Insights into the reversibility of aluminum graphite batteries [J]. J Mater Chem A 5(20)Google Scholar
  7. 7.
    Greco G, Tatchev D, Hoell A et al (2018) Influence of the electrode nano/microstructure on the electrochemical properties of graphite in aluminum batteries [J]. J Mater Chem A 6:22673–22680CrossRefGoogle Scholar
  8. 8.
    Elia GA, Marquardt K, Hoeppner K et al (2016) An overview and future perspectives of aluminum batteries [J]. Adv Mater 28(35):7564–7579CrossRefPubMedGoogle Scholar
  9. 9.
    Elia GA, Marquardt K, Hoeppner K et al (2017) Polyacrylonitrile separator for high-performance aluminum batteries with improved interface stability [J]. ACS Appl Mater Interfaces 9(44):38381–38389CrossRefPubMedGoogle Scholar
  10. 10.
    Equey JF, Müller S, Tsukada A et al (1989) Al/Cl2 battery with slightly acidic NaCl electrolyte. I. Porous graphite chlorine cathodes [J]. J Appl Electrochem 19(1):65–68CrossRefGoogle Scholar
  11. 11.
    Vestergaard B, Bjerrum NJ, Petrushina I et al (1993) Molten triazolium chloride systems as new aluminum batteries electrolytes [J]. J Electrochem Soc 140(11):3108–3113CrossRefGoogle Scholar
  12. 12.
    Jayaprakash N, Das SK, Archer LA et al (2011) The rechargeable aluminum-ion batteries [J]. Chem Commun 47(47):12610–12612CrossRefGoogle Scholar
  13. 13.
    Tu J, Wang S, Li S et al (2017) The Effects of Anions Behaviors on Electrochemical Properties of Al/Graphite Rechargeable Aluminum-Ion Battery via Molten AlCl3-NaCl Liquid Electrolyte [J]. J Electrochem Soc 164:A3292–A3302CrossRefGoogle Scholar
  14. 14.
    Wu Y, Gong M, Lin MC et al (2016) 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion batteries [J]. Adv Mater 28(41):92 18–92 99222Google Scholar
  15. 15.
    Jiao SQ, Lei H, Tu J et al (2016) An industrialized prototype of the rechargeable Al/AlCl3 - [EMIm] C l/graphite battery and recycling of the graphitic cathode into graphene [J]. Carbon 109:276–281CrossRefGoogle Scholar
  16. 16.
    Wang S, Yu Z, Tu J et al (2016) A novel aluminum-ion battery: Al/AlCl3 -[EMIm] C l / Ni3S2 @ Graphene [J]. Adv Energy Mater 6(13)Google Scholar
  17. 17.
    Zhou ZL, Li N, Yang YZ et al (2018) Ultra-lightweight 3D carbon current collectors: constructing all - carbon electrodes for stable and high energy density dual-ion batteries [J]. Adv Energy Mater 8(26):1801439CrossRefGoogle Scholar
  18. 18.
    Angell M, Pan CJ, Rong Y et al (2017) High Coulombic efficiency aluminum-ion batteries using an AlCl3-urea ionic liquid analog electrolyte [J]. Proc Natl Acad Sci USA 114(5):834CrossRefPubMedGoogle Scholar
  19. 19.
    Jiao H, Wang C, Tu J et al (2017) A rechargeable Al-ion battery: Al/molten AlCl3-urea/graphite [J]. Chem Commun 53(15):2331–2334CrossRefGoogle Scholar
  20. 20.
    Yu ZJ, Jiao SQ, Li SJ et al (2019) Flexible stable solid-state Al-Ion batteries [J]. Adv Funct Mater 29(1):1806799CrossRefGoogle Scholar
  21. 21.
    Xu HY, Bai TW, Chen H et al (2019) Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminumion battery [J]. Energy Storage Materials 17:38–45CrossRefGoogle Scholar
  22. 22.
    Elia GA, Kyeremateng NA, Marquardt K et al (2018) An aluminum/graphite battery with ultra-high rate capability [J]. Batteries & SupercapsGoogle Scholar
  23. 23.
    Kravchyk KV, Wang S, Piveteau L et al (2017) Efficient aluminum chloride–natural graphite battery [J]. Chem Mater.
  24. 24.
    Wang S, Kravchyk KV, Filippin AN, et al (2018) Aluminum chloride-graphite batteries with flexible current collectors prepared from earth-abundant elements [J]. Adv Sci: 1700712Google Scholar
  25. 25.
    Gao T, Li X, Wang X et al (2016) A rechargeable Al/S battery with an ionic-liquid electrolyte [J]. Angew Chem 55(34):9898–9901CrossRefGoogle Scholar
  26. 26.
    Yu X, Boyer MJ, Hwang GS et al (2018) Room-temperature aluminum-sulfur batteries with a lithium-ion-mediated ionic liquid electrolyte [J]. Chem 4(3):586–598CrossRefGoogle Scholar
  27. 27.
    Wang WX, Cao Z, Elia GA et al (2018) Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li–S batteries and beyond in Al–S batteries [J]. ACS Energy Lett 3(12):2899–2907CrossRefGoogle Scholar
  28. 28.
    Song Y, Jiao SQ, Tu JG et al (2017) A long-life rechargeable Al ion battery based on molten salts [J]. J Mater Chem A 5:1282–1291CrossRefGoogle Scholar
  29. 29.
    Wang S, Jiao SQ, Song WL et al (2018) A novel dual-graphite aluminum-ion battery [J]. Energy Storage Materials 12:119–127CrossRefGoogle Scholar
  30. 30.
    Wang DY, Wei CY, Lin MC et al (2017) Advanced rechargeable aluminum ion batteries with a highquality natural graphite cathode [J]. Nat Commun 8:14283CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bhauriyal P, Mahata A, Pathak B (2017) The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminum-ion battery [J]. Phys Chem Chem Phys 19(11):7980CrossRefPubMedGoogle Scholar
  32. 32.
    Li J, Tu J, Jiao H et al (2017) Ternary AlCl3 -Urea-[EMIm] Cl ionic liquid electrolyte for rechargeable aluminum-ion batteries [J]. J Electrochem Soc 164(13):A3093–A3100CrossRefGoogle Scholar
  33. 33.
    Chen T, Cheng B, Zhu G et al (2017) Highly efficient retention of polysulfides in "Sea Urchin"-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries [J]. Nano Lett 17(1):437–444CrossRefPubMedGoogle Scholar
  34. 34.
    Wang H, Gu S, Bai Y et al (2015) Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries [J]. J Mater Chem AGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fangyu Gan
    • 1
  • Kanghua Chen
    • 1
    • 2
    Email author
  • Na Li
    • 1
  • Yu Wang
    • 2
  • Yi Shuai
    • 1
  • Xuan He
    • 2
  1. 1.Light Alloy Research InstituteCentral South UniversityChangshaChina
  2. 2.Science and Technology on High Strength Structural Materials LaboratoryCentral South UniversityChangshaChina

Personalised recommendations