pp 1–6 | Cite as

Bimetallic ZIF–derived polyhedron ZnCo2O4 anchored on the reduced graphene oxide as an anode for sodium-ion battery

  • Xing Yang
  • Peng Wang
  • Yiwei Tang
  • Can Peng
  • Yanqing Lai
  • Jie Li
  • Zhian ZhangEmail author
Short Communication


Polyhedron ZnCo2O4 derived from the appropriate oxidation of bimetallic ZIF (Co2/3·Zn1/3(MeIm)2) is anchored on the reduced graphene oxide (rGO) nanosheets via a hydrothermal method. ZnCo2O4 is uniformly distributed in the structure of polyhedron and the polyhedron ZnCo2O4 firmly is decorated on the rGO nanosheets according to the results of element mapping and scanning electron microscope (SEM). With a discharge/charge voltage from 0.01 to 3.0 V, the polyhedron ZnCo2O4@rGO composite electrode displays good cycling performance with a discharge capacity of 134 mA h g−1 after 300 cycles for sodium-ion batteries, which is better than polyhedron ZnCo2O4. Good cycling performance and high reversible capacity can be ascribed to benign conductive environment and flexible supporting of reduced graphene oxide.


Nanocomposites Transition metal oxides Batteries 



This work received financial support from the National Natural Science Foundation of China (No. 51674297).


  1. 1.
    Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries†. Chem Mater 22:691–714CrossRefGoogle Scholar
  2. 2.
    Myung ST, Maglia F, Park KJ, Yoon CS, Lamp P, Kim SJ, Sun YK (2016) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2:196–223CrossRefGoogle Scholar
  3. 3.
    Wu F, Yushin G (2017) Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci 10:435–459CrossRefGoogle Scholar
  4. 4.
    Ahmed S, Nelson PA, Gallagher KG, Susarla N, Dees DW (2017) Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries. J Power Sources 342:733–740CrossRefGoogle Scholar
  5. 5.
    Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRefGoogle Scholar
  6. 6.
    Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S (2014) Negative electrodes for Na-ion batteries. Phys Chem Chem Phys 16:15007–15028CrossRefGoogle Scholar
  7. 7.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRefGoogle Scholar
  8. 8.
    Barpanda P, Oyama G, Nishimura S, Chung SC, Yamada A (2014) A 3.8-V earth-abundant sodium battery electrode. Nat Commun 5:4358CrossRefGoogle Scholar
  9. 9.
    Chen J, Ru Q, Mo Y, Hu S, Hou X (2016) Design and synthesis of hollow NiCo2O4 nanoboxes as anodes for lithium-ion and sodium-ion batteries. Phys Chem Chem Phys 18:18949–18957CrossRefGoogle Scholar
  10. 10.
    Du N, Xu Y, Zhang H, Yu J, Zhai C, Yang D (2011) Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. Inorg Chem 50:3320–3324CrossRefGoogle Scholar
  11. 11.
    Sun S, Wen Z, Jin J, Cui Y, Lu Y (2013) Synthesis of ordered mesoporous CuCo2O4 with different textures as anode material for lithium ion battery. Microporous Mesoporous Mater 169:242–247CrossRefGoogle Scholar
  12. 12.
    Sharma Y, Sharma N, Subbarao G, Chowdari B (2008) Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ionics 179:587–597CrossRefGoogle Scholar
  13. 13.
    Mondal AK, Su D, Chen S, Ung A, Kim HS, Wang G (2015) Mesoporous MnCo2O4 with a flake-like structure as advanced electrode materials for lithium-ion batteries and supercapacitors. Chemistry 21:1526–1532CrossRefGoogle Scholar
  14. 14.
    Tang J, Salunkhe RR, Zhang H, Malgras V, Ahamad T, Alshehri SM, Kobayashi N, Tominaka S, Ide Y, Kim JH, Yamauchi Y (2016) Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci Rep 6:30295CrossRefGoogle Scholar
  15. 15.
    Ahn W, Song HS, Park S, Kim K, Shin K, Lim S, Yeon S (2014) Morphology-controlled graphene nanosheets as anode material for lithium-ion batteries. Electrochim Acta 132:172–179CrossRefGoogle Scholar
  16. 16.
    Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L (2016) Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv Energy Mater 6:1600376CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Yang X, Fu Y, Du K (2015) Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J Power Sources 296:2–9CrossRefGoogle Scholar
  18. 18.
    Ru Q, Zhao D, Guo L, Hu S, Hou X (2017) Three-dimensional rose-like ZnCo2O4 as a binder-free anode for sodium ion batteries. J Mater Sci Mater Electron 28:15451–15456CrossRefGoogle Scholar
  19. 19.
    Qiu K, Liu Y, Zhang D, Cheng J, Yan H, Xu J, Liu X, Kim J, Luo Y (2015) Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 11:687–696CrossRefGoogle Scholar
  20. 20.
    Khassin A, Yurieva T, Kaichev V, Bukhtiyarov V, Budneva A, Paukshtis E, Parmo V (2001) Metal-support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. J Mol Catal A Chem 175:189–204CrossRefGoogle Scholar
  21. 21.
    Wang Q, Jiao L, Du H, Si Y, Wang Y, Yuan H (2012) Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors. J Mater Chem 22:21387–21391CrossRefGoogle Scholar
  22. 22.
    Chen Y, Zhu J, Qu B, Lu B, Xu Z (2014) Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays. Nano Energy 3:88–94CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Yang X, Guo Z, Qu Y, Li J, Lai Y (2015) Selenium/carbon-rich core-shell composites as cathode materials for rechargeable lithium-selenium batteries. J Power Sources 279:88–93CrossRefGoogle Scholar
  24. 24.
    Yang X, Zhang Z, Fu Y, Li Q (2015) Porous hollow carbon spheres decorated with molybdenum diselenide nanosheets as anodes for highly reversible lithium and sodium storage. Nanoscale 7:10198–10203CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xing Yang
    • 1
  • Peng Wang
    • 1
  • Yiwei Tang
    • 2
  • Can Peng
    • 2
  • Yanqing Lai
    • 1
  • Jie Li
    • 1
  • Zhian Zhang
    • 1
    Email author
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Guangdong Jiana Energy Technology Co., Ltd.QingyuanChina

Personalised recommendations