, Volume 25, Issue 9, pp 4341–4350 | Cite as

Low-cost high-performance asymmetric supercapacitors based on ribbon-like Ni(OH)2 and biomass carbon nanofibers enriched with nitrogen and phosphorus

  • Debin Kong
  • Lin Cao
  • Zeming Fang
  • Fenglin Lai
  • Zhidan LinEmail author
  • Peng ZhangEmail author
  • Wei Li
Original Paper


Herein, we report a facile and low-cost synthesis of nitrogen and phosphorus co-doped carbonized bacterial cellulose (N, P-CBC) via in-situ soaking bacteria cellulose and carbonization method. The N, P-CBC yielded a high specific capacitance of 232 F g−1 at 1 A g−1 and 92.7% rate capability retention at 5 A g−1. Moreover, the asymmetric supercapacitor (ASC) device was further fabricated with N, P-CBC as the negative electrode and Ni(OH)2, prepared using a simple chemical precipitate method as the positive electrode. The fabricated ASC device provided a maximum working voltage of 1.6 V and high energy density (41.9 Wh kg−1 at a power density of 799.2 W kg−1). The device exhibits remarkable specific capacitance (118 F g−1 at 1 A g−1) and excellent cycle lifetime (76.3% specific capacitance after 5000 cycles). Such an excellent electrochemical performance demonstrated that the as-prepared N, P-CBC and Ni(OH)2 electrodes will be both great potential candidates for supercapacitors.


Nitrogen and phosphorus co-doped Carbonized bacterial cellulose Ni(OH)2 Asymmetric supercapacitors 


Funding information

This research was supported by the Guangdong Science and Technology Project Fund (no. 2015A030310488) and the Scientific Cultivation and Innovation Fund Project of Jinan University (Nos. 21617427 and 21617422).


  1. 1.
    Wang YG, Song YF, Xia YY (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950CrossRefGoogle Scholar
  2. 2.
    Winter M, Ralph J, Brodd (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270CrossRefGoogle Scholar
  3. 3.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  4. 4.
    Chen HC, Jiang JJ, Zhang L, Zhao YD, Guo DQ, Ruan YJ, Xia DD (2015) One-pot fabrication of layered α-phase nickel- cobalt hydroxides as advanced electrode materials for pseudocapacitors. ChemPlusChem 80:181–182CrossRefGoogle Scholar
  5. 5.
    Jeffrey WL, Bélanger D, Brousse T, Sugimoto W, Sassin MB, Crosnier O (2011) Asymmetric electrochemical capacitors ––stretching the limits of aqueous electrolytes. MRS Bull 36:513–522CrossRefGoogle Scholar
  6. 6.
    Wang J, Chang J, Wang L, Hao J (2018) One-step and low-temperature synthesis of CoMoO4 nanowire arrays on Ni foam for asymmetric supercapacitors. Ionics 24:3967–3973CrossRefGoogle Scholar
  7. 7.
    Nicolas GB, Crosnier O, Buvat G, Favier F, Brousse T (2016) Electrochemical study of aqueous asymmetric FeWO4/MnO2 supercapacitor. J Power Sources 326:695–701CrossRefGoogle Scholar
  8. 8.
    Zhao P, Yao MQ, Ren HB, Wang N, Komarneni S (2019) Nanocomposites of hierarchical ultrathin MnO2 nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors. Appl Surf Sci 463:931–938CrossRefGoogle Scholar
  9. 9.
    Wang XZ, Su DC, Xiao YH, Xu SG, Fang SM, Cao SK (2019) Ultra-dispersed island-like Co9S8 nanoparticles composed of nanosheets in-situ grown on nitrogen-doped graphene for asymmetric supercapacitor. Electrochim Acta 293:419–425CrossRefGoogle Scholar
  10. 10.
    Wei M, Wang C, Yao YB, Yu SH, Liao WH, Ren JW, Sun R, Wong CP (2019) Toward high-performance all-solid-state supercapacitors using facilely fabricated graphite nanosheet-supported CoMoS4 as electrode material. Chem Eng J 355:891–900CrossRefGoogle Scholar
  11. 11.
    Wang HP, Ma GF, Tong YC, Yang ZR (2018) Biomass carbon/polyaniline composite and WO3 nanowire-based asymmetric supercapacitor with superior performance. Ionics 24:3123–3131CrossRefGoogle Scholar
  12. 12.
    He XY, Zhao YH, Chen RR, Zhang HS, Liu JY, Liu Q, Song DL, Li RM, Wang J (2018) Hierarchical FeCo2O4@polypyrrole core/shell nanowires on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. ACS Sustain Chem Eng 6:14945–14954CrossRefGoogle Scholar
  13. 13.
    Zhao YH, He XY, Chen RR, Liu Q, Liu JY, Song DL, Zhang HS, Dong HX, Li RM, Zhang ML, Wang J (2018) Hierarchical NiCo2S4@CoMoO4 core/shell heterostructures nanowire arrays as advanced electrodes for flexible all-solid-state asymmetric supercapacitors. Appl Surf Sci 453:73–82CrossRefGoogle Scholar
  14. 14.
    Zhao YH, He XY, Chen RR, Liu Q, Liu JY, Yu J, Li JQ, Zhang HS, Dong HX, Zhang ML, Wang J (2018) A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures. Chem Eng J 352:29–38CrossRefGoogle Scholar
  15. 15.
    Lang JW, Kong LB, Liu M, Luo YC, Kang L (2010) Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. J Solid State Electrochem 14:1533–1539CrossRefGoogle Scholar
  16. 16.
    Yang PH, Ding Y, Lin ZY, Chen ZW, Li YZ, Qiang PF, Ebrahimi M, Mai WJ, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736CrossRefGoogle Scholar
  17. 17.
    Aguilera L, Leyet Y, Garcia RP, Hernández EP, Passos RR, Pocrifka LA (2017) Cabbage-like α-Ni(OH)2 with a good long-term cycling stability and high electrochemical performances for supercapacitor applications. Chem Phys Lett 677:75–79CrossRefGoogle Scholar
  18. 18.
    Li HL, Liu SQ, Huang CH, Zhou Z, Li YH, Fang D (2011) Characterization and supercapacitor application of coin-like β-nickel hydroxide nanoplates. Electrochim Acta 58:89–94CrossRefGoogle Scholar
  19. 19.
    Pichamon S, Pawin I, Atiweena K, Tanut P, Peerapan D, Pinit K (2017) Hybrid energy storage of battery-type nickel hydroxide and supercapacitor-type graphene: redox additive and charge storage mechanism. Sustain Energ Fuels 1:275–279CrossRefGoogle Scholar
  20. 20.
    Vijaykumar S, Muralidharan G (2014) Electrochemical supercapacitor behavior of α-Ni(OH)2 nanoparticles synthesized via green chemistry route. J Electroanal Chem 727:53–58CrossRefGoogle Scholar
  21. 21.
    Lokhande PE, Chavan US (2018) Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications. Mater Lett 218:225–228CrossRefGoogle Scholar
  22. 22.
    Khan Y, Hussain S, Söderlind F, Käll PO, Abbasi MA, Durrani SK (2012) Honeycomb β-Ni(OH)2 films grown on 3D nickel foam substrates at low temperature. Mater Lett 69:37–40CrossRefGoogle Scholar
  23. 23.
    Xiong X, Ding D, Chen D, Waller G, Bu Y, Wang Z, Liu M (2015) Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 11:154–161CrossRefGoogle Scholar
  24. 24.
    Tian X, Cheng C, Qian L, Zheng B, Yuan H, Xie S, Xiao D, Choi MMF (2012) Microwave-assisted non-aqueous homogenous precipitation of nanoball-like mesoporous α-Ni(OH)2 as a precursor for NiOx and its application as a pseudocapacitor. J Mater Chem 22:8029CrossRefGoogle Scholar
  25. 25.
    Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 12647:1–5Google Scholar
  26. 26.
    Liu TY, Zhang F, Song Y, Li Y (2017) Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J Mater Chem A 5:17705–17733CrossRefGoogle Scholar
  27. 27.
    Inal IIG, Holmes SM, Banford A, Aktas Z (2015) The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl Surf Sci 357:696–703CrossRefGoogle Scholar
  28. 28.
    Thubsuang U, Laebang S, Manmuanpom N, Wongkasemjit S, Chaisuwan T (2017) Tuning pore characteristics of porous carbon monoliths prepared from rubber wood waste treated with H3PO4 or NaOH and their potential as supercapacitor electrode materials. J Mater Sci 52:6837–6855CrossRefGoogle Scholar
  29. 29.
    Lei W, Han LL, Xuan CJ, Lin RQ, Liu HF, Xin HL, Wang D (2016) Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries. Electrochim Acta 210:130–137CrossRefGoogle Scholar
  30. 30.
    Chen H, Liu D, Shen ZH, Bao BF, Zhao SY, Wu LM (2015) Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochim Acta 180:241–225CrossRefGoogle Scholar
  31. 31.
    Zhang WL, Xu JH, Hou DX, Yin J, Liu DB, He YP, Lin HB (2018) Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. J Colloid Interface Sci 530:338–344CrossRefGoogle Scholar
  32. 32.
    Sherstha S, Mustain WE (2010) Properties of nitrogen-functionalized ordered mesoporous carbon prepared using polypyrrole precursor. J Electrochem Soc 157:B1665–B1672CrossRefGoogle Scholar
  33. 33.
    Chen LF, Zhang XD, Liang HW, Kong MG, Guan QF, Chen P, Wu ZY, Yu SH (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6:7092–7102CrossRefGoogle Scholar
  34. 34.
    Hu ZX, Li SS, Chen PP, Yu WD, Li RC, Shao XF, Lin WR, Yuan DS (2016) N, P-co-doped carbon nanowires prepared from bacterial cellulose for supercapacitor. J Mater Sci 5:2627–2633CrossRefGoogle Scholar
  35. 35.
    Wang B, Li XL, Luo B, Yang JX, Wang XJ, Song Q, Chen SY, Zhi LJ (2013) Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials. Small 9:2399–2404CrossRefGoogle Scholar
  36. 36.
    Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH (2014) Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5111CrossRefGoogle Scholar
  37. 37.
    Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641CrossRefGoogle Scholar
  38. 38.
    Chen XA, Chen XH, Zhang FQ, Yang Z, Huang SM (2013) One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J Power Sources 243:556–557Google Scholar
  39. 39.
    Lee JW, Ahn T, Soundararajan D, Koc JM, Kim JD (2011) Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem Commun 47:6305–6307CrossRefGoogle Scholar
  40. 40.
    Yang YF, Cheng D, Chen SJ, Guan YL, Xiong J (2018) Construction of hierarchical NiCo2S4@Ni(OH)2 core-shell hybrid nanosheet arrays on Ni foam for high-performance aqueous hybrid supercapacitors. Electrochim Acta 193:116–127CrossRefGoogle Scholar
  41. 41.
    Ede SR, Anantharaj S, Kumaran KT, Mishra S, Kundu S (2017) One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors. RSC Adv 7:5898–5911CrossRefGoogle Scholar
  42. 42.
    Li XM, Qiao YQ, Wang CH, Shen TD, Zhang XY, Wang HC, Li YS, Gao WM (2019) MOF-derived Co/C nanocomposites encapsulated by Ni(OH)2 ultrathin nanosheets shell for high performance supercapacitors. J Alloys Compd 770:803–812CrossRefGoogle Scholar
  43. 43.
    Wang DW, Guan B, Li Y, Li DD, Xu ZY, Hu YF, Wang YQ, Zhang HH (2018) Morphology-controlled synthesis of hierarchical mesoporous α-Ni(OH)2 microspheres for high-performance asymmetric supercapacitors. J Alloys Compd 737:238–247CrossRefGoogle Scholar
  44. 44.
    Wang PY, Li YN, Li SD, Liao XQ, Sun SM (2017) Water-promoted zeolitic framework-67 transformation to Ni-Co layered double hydroxide hollow microsphere for supercapacitor electrode material. J Mater Sci Mater Electron 28:9221–9227CrossRefGoogle Scholar
  45. 45.
    Li M, Yang HX, Wang YH, Wang LW, Chu PK (2018) Core-shell CoMoO4@Ni(OH)2 on ordered macro-porous electrode plate for high-performance supercapacitor. Electrochim Acta 283:538–547CrossRefGoogle Scholar
  46. 46.
    Bai X, Liu Q, Liu JY, Zhang HS, Li ZS, Jing XY, Liu PL, Wang J, Li RM (2017) Hierarchical Co3O4@Ni(OH)2 core-shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance. Chem Eng J 315:35–45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Advanced Wear & Corrosion Resistant and Functional MaterialsJinan UniversityGuangzhouPeople’s Republic of China

Personalised recommendations