, Volume 25, Issue 9, pp 4075–4082 | Cite as

Nano-scale hollow structure carbon-coated LiFePO4 as cathode material for lithium ion battery

  • Junjie Lu
  • Wenlong Li
  • Chao Shen
  • Dongmei Tang
  • Lanxuan Dai
  • Guowang Diao
  • Ming ChenEmail author
Original Paper


In this paper, carbon-coated LiFePO4 nano-hollow spheres (LFP@C HSs) were successfully synthesized using lithium phosphate (Li3PO4) nano-spheres as templates and precursors. The X-ray diffractometer (XRD) demonstrated the crystal structure of LFP@C HSs. The morphology of LFP@C HSs was determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Compared with LiFePO4 nano-hollow spheres without carbon coating (LFP HSs) and commercial LiFePO4 (commercial LFP), the rate performance of LFP@C HSs has been evidently improved by carbon coating and hollow structure. At the highest rate of 5 C, LFP@C HSs still maintains a capacity of 101.4 mA h−1 g−1. LFP@C HSs show excellent cycling performance at a current density of 1 C, maintaining 92.5% of the initial capacity after 500 cycles.


Carbon-coated LiFePO4 Hollow spheres Rate performance Cathode material Lithium ion batteries 


Funding information

The funding support was from the National Natural Science Foundation of China (Grant No. 21773203), Natural Science Foundation of Jiangsu Province (BK20161329), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. 1.
    Padhi AK, Nanjundaswamy KS, Masquelier C et al (1997) ChemInform abstract: mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. Cheminform 28:2581–2586Google Scholar
  2. 2.
    Contestabile M, Offer GJ, Slade R, Jaeger F, Thoennes M (2011) Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? Energy Environ Sci 4:3754CrossRefGoogle Scholar
  3. 3.
    Wu X-L, Jiang L-Y, Cao F-F, Guo YG, Wan LJ (2009) LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv Mater 21:2710–2714CrossRefGoogle Scholar
  4. 4.
    Xu X, Mi J, Fan M, Yang K, Wang H, Liu J, Yan H (2019) Study on the performance evaluation and echelon utilization of retired LiFePO4 power battery for smart grid. J Clean Prod 213:1080–1086CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Peng L, Liu B, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett 14:2849–2853CrossRefPubMedGoogle Scholar
  6. 6.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRefPubMedGoogle Scholar
  7. 7.
    Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon JM, Masquelier C (2008) Room-temperature single-phase Li|[nbsp]|insertion/extraction in nanoscale LixFePO4. Nat Mater 7:741–747CrossRefPubMedGoogle Scholar
  8. 8.
    Wang B, Xu B, Liu T, Liu P, Guo C, Wang S, Wang Q, Xiong Z, Wang D, Zhao XS (2014) Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale 6:986–995CrossRefPubMedGoogle Scholar
  9. 9.
    Yuan L-X, Wang Z-H, Zhang W-X, Hu XL, Chen JT, Huang YH, Goodenough JB (2011) Development and challenges of LiFePO4cathode material for lithium-ion batteries. Energy Environ Sci 4:269–284CrossRefGoogle Scholar
  10. 10.
    Wang Y, He P, Zhou H (2011) Olivine LiFePO4: development and future. Energy Environ Sci 4:805–817CrossRefGoogle Scholar
  11. 11.
    Weichert K, Sigle W, Van Aken PA et al (2012) Phase boundary propagation in large LiFePO4 single crystals on delithiation. J Am Chem Soc 134:2988–2992CrossRefPubMedGoogle Scholar
  12. 12.
    Saji VS, Kim YS, Kim TH, Cho J, Song HK (2011) One-dimensional (1D) nanostructured and nanocomposited LiFePO4: its perspective advantages for cathode materials of lithium ion batteries. Phys Chem Chem Phys 13:19226–19237CrossRefPubMedGoogle Scholar
  13. 13.
    Wang G, Liu H, Liu J, Qiao S, Lu GM, Munroe P, Ahn H (2010) Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv Mater 22:4944–4948CrossRefPubMedGoogle Scholar
  14. 14.
    Saravanan K, Balaya P, Reddy MV, Chowdari BVR, Vittal JJ (2010) Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energy Environ Sci 3:457–464CrossRefGoogle Scholar
  15. 15.
    Sun B, Asfaw HD, Rehnlund D, Mindemark J, Nyholm L, Edström K, Brandell D (2018) Toward solid-state 3D-microbatteries using functionalized polycarbonate-based polymer electrolytes. ACS Appl Mater Interfaces 10:2407–2413CrossRefPubMedGoogle Scholar
  16. 16.
    Li C, Hua N, Wang C, Kang X, Tuerdi Wumair, Han Y (2011) Effect of Mn 2+ −doping in LiFePO 4 and the low temperature electrochemical performances. J Alloys Compd 509:1897–1900CrossRefGoogle Scholar
  17. 17.
    Meng E, Zhang M, Hu Y, Gong F, Zhang L, Li F (2018) Solid-state attachments of Ag nanoparticles onto the surfaces of LiFePO 4 cathode materials for Li storage with enhanced capabilities. Electrochim Acta 265:160–165CrossRefGoogle Scholar
  18. 18.
    Xu X, Hao Z, Wang H et al (2018) In-situ preparation of mesoporous carbon contained graphite-zinc quantum dots for enhancing the electrochemical performance of LiFePO4. Ionics 25:89–98CrossRefGoogle Scholar
  19. 19.
    Xu X, Qi C, Hao Z, Wang H, Jiu JT, Liu JB, Yan H, Suganuma K (2018) The surface coating of commercial LiFePO4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery. Nanomicro Lett 10:1PubMedGoogle Scholar
  20. 20.
    Zhu C, Yu Y, Gu L, Weichert K, Maier J (2011) Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew Chem 50:6278–6282CrossRefGoogle Scholar
  21. 21.
    Zhu T, Xia B, Zhou L, Wen (David) Lou X (2012) Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. J Mater Chem 22:7851CrossRefGoogle Scholar
  22. 22.
    Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185CrossRefGoogle Scholar
  23. 23.
    Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS (2012) Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett 12:2446–2451CrossRefPubMedGoogle Scholar
  24. 24.
    Lepage D, Michot C, Liang G, Gauthier M, Schougaard SB (2011) A soft chemistry approach to coating of LiFePO4 with a conducting polymer. Angew Chem 50:6884–6887CrossRefGoogle Scholar
  25. 25.
    Kim W, Ryu W, Han D, Lim SJ, Eom JY, Kwon HS (2014) Fabrication of graphene embedded LiFePO4 using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries. ACS Appl Mater Interfaces 6:4731–4736CrossRefPubMedGoogle Scholar
  26. 26.
    Xu X, Hao Z, Wang H et al (2018) A facile synthetic route of nitrogen-doped graphite derived from chitosan for modifying LiFePO4 cathode. J Mater Sci Mater Electron 29:16630–16638CrossRefGoogle Scholar
  27. 27.
    Xu X, Hao Z, Wang H, Liu JB, Yan H (2017) Mesoporous carbon derived from ZIF-8 for improving electrochemical performances of commercial LiFePO4. Mater Lett 197:209–212CrossRefGoogle Scholar
  28. 28.
    Zhu S, Chen M, Ren W, Yang J, Qu S, Li Z, Diao G (2015) Microwave assisted synthesis of α-Fe2O3/reduced graphene oxide as anode material for high performance lithium ion batteries. New J Chem 39:7923–7931CrossRefGoogle Scholar
  29. 29.
    Dimesso L, Forster C, Jaegermann W et al (2012) Developments in nanostructured LiMPO4 (M = Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture. Chem Soc Rev 41:5068–5080CrossRefPubMedGoogle Scholar
  30. 30.
    Huang K, Li B, Zhao M, Qiu J, Xue H, Pang H (2017) Synthesis of lithium metal silicates for lithium ion batteries. Chin Chem Lett 28:2195–2206CrossRefGoogle Scholar
  31. 31.
    Liu Y, Liu J, Wang J et al (2018) Formation of size-dependent and conductive phase on lithium iron phosphate during carbon coating. Nat Commun 9:929CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019CrossRefGoogle Scholar
  33. 33.
    Chen Y, Chen HR, Shi JL (2014) Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications. Acc Chem Res 47:125–137CrossRefPubMedGoogle Scholar
  34. 34.
    Chen Z, Cao L, Chen L, Zhou H, Zheng C, Xie K, Kuang Y (2015) Mesoporous LiFeBO 3 /C hollow spheres for improved stability lithium-ion battery cathodes. J Power Sources 298:355–362CrossRefGoogle Scholar
  35. 35.
    Fischer MG, Hua X, Wilts BD, Castillo-Martínez E, Steiner U (2018) Polymer-templated LiFePO4/C nanonetworks as high-performance cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 10:1646–1653CrossRefPubMedGoogle Scholar
  36. 36.
    Liu Y, Wang J, Liu J, Banis MN, Xiao B, Lushington A, Xiao W, Li R, Sham TK, Liang G, Sun X (2018) Origin of phase inhomogeneity in lithium iron phosphate during carbon coating. Nano Energy 45:52–60CrossRefGoogle Scholar
  37. 37.
    Wu K, Du K, Hu G (2018) Red-blood-cell-like (NH4)[Fe2(OH)(PO4)2]·2H2O particles: fabrication and application in high-performance LiFePO4 cathode materials. J Mater Chem A 6:1057–1066CrossRefGoogle Scholar
  38. 38.
    Lee MH, Kim JY, Song HK (2010) A hollow sphere secondary structure of LiFePO4 nanoparticles. Chem Commun 46:6795–6797CrossRefGoogle Scholar
  39. 39.
    Bi J, Zhang T, Wang K, Zhong B, Luo G (2016) Controllable synthesis of Li3PO4 hollow nanospheres for the preparation of high performance LiFePO4 cathode material. Particuology 24:142–150CrossRefGoogle Scholar
  40. 40.
    Yang S, Hu M, Xi L, Ma R, Dong Y, Chung CY (2013) Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries. ACS Appl Mater Interfaces 5:8961–8967CrossRefPubMedGoogle Scholar
  41. 41.
    Li Z, Yang J, Li C, Wang S, Zhang L, Zhu K, Wang X (2018) Orientation-dependent lithium miscibility gap in LiFePO4. Chem Mater 30:874–878CrossRefGoogle Scholar
  42. 42.
    Liu Q, Liu Y, Yang F, He H, Xiao X, Ren Y, Lu W, Stach E, Xie J (2018) Capacity fading mechanism of the commercial 18650 LiFePO4-based lithium-ion batteries: an in situ time-resolved high-energy synchrotron XRD study. ACS Appl Mater Interfaces 10:4622–4629CrossRefPubMedGoogle Scholar
  43. 43.
    Owen J, Hector A (2014) Phase-transforming electrodes. Science 344(6191):1451–1452CrossRefPubMedGoogle Scholar
  44. 44.
    Zhu S, Sun J, Wu T, Su X, Su H, Qu S, Xie Y, Chen M, Diao G (2016) Graphitized porous carbon nanofibers prepared by electrospinning as anode materials for lithium ion batteries. RSC Adv 6:83185–83195CrossRefGoogle Scholar
  45. 45.
    Cabánhuertas Z, Ayyad O, Dubal DP et al (2016) Aqueous synthesis of LiFePO4 with fractal granularity. Sci Rep 6:27024CrossRefGoogle Scholar
  46. 46.
    Praneetha S, Vadivel Murugan A (2013) A rapid, one-pot microwave-solvothermal synthesis of a hierarchical nanostructured graphene/LiFePO4 hybrid as a high performance cathode for lithium ion batteries. RSC Adv 3:25403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Junjie Lu
    • 1
  • Wenlong Li
    • 1
  • Chao Shen
    • 1
  • Dongmei Tang
    • 1
  • Lanxuan Dai
    • 1
  • Guowang Diao
    • 1
  • Ming Chen
    • 1
    Email author
  1. 1.School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations