Advertisement

Ionics

, Volume 25, Issue 9, pp 4119–4128 | Cite as

Facile synthesis of MoS2@TiNb2O7 nanocomposite anode materials with superior electrochemical performance for Li-ion batteries

  • Yueqiu GongEmail author
  • Hongyi Chen
  • Lunjun Gong
  • Shuhong Xie
Original Paper
  • 146 Downloads

Abstract

Novel hierarchical MoS2@TiNb2O7 (MS@TNO) hetero-nanostructures consisted of TiNb2O7 nanorods and ultrathin MoS2 nanosheets were successfully synthesized by simple sol-gel/hydrothermal processes. The synergistic effects of the two constituents benefited to the lithium-ion transport kinetics of the MS@TNO hetero-nanostructure for lithium-ion batteries (LIBs). In the potential range of 0.01~3.00 V vs. Li/Li+, the MS@TNO-based LIBs exhibited high capacities of 925 and 771 mAh g−1 after 50 and 200 cycles at a current density of 0.5 A g−1, respectively, and excellent rate performance of 579 mAh g−1 at 4 A g−1. The obtained anode materials exhibited excellent electrochemical performance with superior reversible capacity, rate capability, and cyclic stability. The outstanding electrochemical property of 3D MS@TNO hetero-nanostructures allows their application in high-performance anode materials for next-generation LIBs.

Keywords

MoS2@TiNb2O7 hetero-nanostructures Electrochemical performance Lithium-ion battery anode 

Notes

Funding information

The authors acknowledge financial support from the NSF of China (Grant Nos. 11772286 and 11627801).

References

  1. 1.
    Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206CrossRefPubMedGoogle Scholar
  2. 2.
    Li H, Shen L, Zhang X, Wang J, Nie P, Che Q, Ding B (2013) Nitrogen-doped carbon coated Li4Ti5O12 nanocomposite: superior anode materials for rechargeable lithium ion batteries. J Power Sources 221:122–127CrossRefGoogle Scholar
  3. 3.
    Crowther O, West AC (2008) Effect of electrolyte composition on lithium dendrite growth. J Electrochem Soc 155:A806–A811CrossRefGoogle Scholar
  4. 4.
    Guo B, Yu K, Fu H, Hua Q, Qi R, Li H, Song H, Guo S, Zhu Z (2015) Firework-shaped TiO2 microspheres embedded with few-layer MoS2 as an anode material for excellent performance lithium-ion batteries. J Mater Chem A 3:6392–6401CrossRefGoogle Scholar
  5. 5.
    Wang J, Zhou Y, Shao Z (2013) Porous TiO2 (B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries. Electrochim Acta 97:386–392CrossRefGoogle Scholar
  6. 6.
    Cai Y, Wang HE, Huang SZ, Jin J, Wang C, Yu Y, Su BL (2015) Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Sci Rep 5:11557CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhuang J, Wang Z, Zhang J, Lu G, Kang X, Cheng Z (2018) Ternary-phase Li4Ti5O12/TiO2 nanosheet composite for high rate lithium-ion batteries. Energy Technol 6:1771–1776CrossRefGoogle Scholar
  8. 8.
    Zhang D, Pan A, Zhong X, Song H, Zhang Y, Tang Y, Wang J (2018) MoS2 nanosheets uniformly coated TiO2 nanowire arrays with enhanced electrochemical performances for lithium-ion batteries. J Alloys Compd 758:91–98CrossRefGoogle Scholar
  9. 9.
    Pei J, Geng H, Ang EH, Zhang L, Cao X, Zheng J, Gu H (2018) Controlled synthesis of hollow C@TiO2@MoS2 hierarchical nanospheres for high-performance lithium-ion batteries. Nanoscale 10:17327–17334CrossRefPubMedGoogle Scholar
  10. 10.
    Zhuang W, Li L, Zhu J, An R, Lu L, Lu X, Wu X, Ying H (2015) Facile synthesis of mesoporous MoS2-TiO2 nanofibers for ultrastable lithium ion battery anodes. ChemElectroChem 2:374–381CrossRefGoogle Scholar
  11. 11.
    Zhu G, Li Q, Zhao Y, Che R (2017) Nanoporous TiNb2O7/C composite microspheres with three-dimensional conductive network for long-cycle-life and high-rate-capability anode materials for Lithium-ion batteries. ACS Appl Mater Interfaces 9:41258–41264CrossRefPubMedGoogle Scholar
  12. 12.
    Lu X, Jian Z, Fang Z, Gu L, Hu YS, Chen W, Chen L (2011) Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energy Environ Sci 4:2638–2644CrossRefGoogle Scholar
  13. 13.
    Pham-Cong D, Choi JH, Yun J, Bandarenka AS, Kim J, Braun PV, Cho CR (2017) Synergistically enhanced electrochemical performance of hierarchical MoS2/TiNb2O7 hetero-nanostructures as anode materials for Li-ion batteries. ACS Nano 11:1026–1033CrossRefPubMedGoogle Scholar
  14. 14.
    Park H, Shin DH, Song T, Park WI, Paik U (2017) Synthesis of hierarchical porous TiNb2O7 nanotubes with controllable porosity and their application in high power Li-ion batteries. J Mater Chem A 5:6958–6965CrossRefGoogle Scholar
  15. 15.
    Chen M, Dai Y, Wang J, Wang Q, Wang Y, Cheng X, Yan X (2017) Smart combination of three-dimensional-flower-like MoS2 nanospheres/interconnected carbon nanotubes for application in supercapacitor with enhanced electrochemical performance. J Alloy Compd 696:900–906CrossRefGoogle Scholar
  16. 16.
    Yu H, Lan H, Yan L, Qian S, Cheng X, Zhu H, Shu J (2017) TiNb2O7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries. Nano Energy 38:109–117CrossRefGoogle Scholar
  17. 17.
    Xu W, Wang T, Wu S, Wang S (2017) N-doped carbon-coated MoS2 nanosheets on hollow carbon microspheres for high-performance lithium-ion batteries. J Alloy Compd 698:68–76CrossRefGoogle Scholar
  18. 18.
    Kumuthini R, Ramachandran R, Therese HA, Wang F (2017) Electrochemical properties of electrospun MoS2@C nanofiber as electrode material for high-performance supercapacitor application. J Alloy Compd 705:624–630CrossRefGoogle Scholar
  19. 19.
    Zhang X, Ding P, Sun Y, Wang Y, Wu Y, Guo J (2017) Shell-core MoS2 nanosheets@Fe3O4 sphere heterostructure with exposed active edges for efficient electrocatalytic hydrogen production. J Alloy Compd 715:53–59CrossRefGoogle Scholar
  20. 20.
    Yu XY, Hu H, Wang Y, Chen H, Lou XW (2015) Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew Chem Int Ed 54:7395–7398CrossRefGoogle Scholar
  21. 21.
    Wang Y, Jin Y, Li S, Han J, Ju Z, Jia M (2018) Flower-like MoS2 supported on three-dimensional graphene aerogels as high-performance anode materials for sodium-ion batteries. Ionics 24:3431–3437Google Scholar
  22. 22.
    Wang S, Guan BY, Yu L, Lou XW (2017) Rational design of three-layered TiO2@carbon@MoS2 hierarchical nanotubes for enhanced lithium storage. Adv Mater 29:1702724CrossRefGoogle Scholar
  23. 23.
    Zhang G, Liu H, Qu J, Li J (2016) Two-dimensional layered MoS2:rational design, properties and electrochemical applications. Energy Environ Sci 9:1190–1209CrossRefGoogle Scholar
  24. 24.
    Su L, Jing Y, Zhou Z (2011) Li ion battery materials with core–shell nanostructures. Nanoscale 3:3967–3983CrossRefPubMedGoogle Scholar
  25. 25.
    Geng Q, Tong X, Wenya GE, Yang C, Wang J, Maloletnev AS, Wang Z, Su X (2018) Humate-assisted synthesis of MoS2/C nanocomposites via Co-precipitation/calcination route for high performance lithium ion batteries. Nanoscale Res Lett 13:1–9CrossRefGoogle Scholar
  26. 26.
    Wang Q, Li J (2007) Facilitated lithium storage in MoS2 overlayers supported on coaxial carbon nanotubes. J Phys Chem C 111:1675–1682CrossRefGoogle Scholar
  27. 27.
    Das SK, Mallavajula R, Jayaprakash N, Archer LA (2012) Self-assembled MoS2–carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance. J Mater Chem 22:12988–12992CrossRefGoogle Scholar
  28. 28.
    Chen M, Wang J, Yan X, Ren J, Dai Y, Wang Q, Cheng X (2017) Flower-like molybdenum disulfide nanosheets grown on carbon nanosheets to form nanocomposites: novel structure and excellent electrochemical performance. J Alloy Compd 722:250–258CrossRefGoogle Scholar
  29. 29.
    Han JT, Huang YH, Goodenough JB (2011) New anode framework for rechargeable lithium batteries. Chem Mater 23:2027–2029CrossRefGoogle Scholar
  30. 30.
    Huang F, Yan A, Sui Y, Wei F, Qi J, Meng Q, He Y (2017) One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor. J Mater Sci Electron 28:12747–12754CrossRefGoogle Scholar
  31. 31.
    Li X, Li W, Li M, Cui P, Chen D, Gengenbach T, Chu L, Liu H, Song G (2015) Glucose-assisted synthesis of the hierarchical TiO2 nanowire@MoS2 nanosheet nanocomposite and its synergistic lithium storage performance. J Mater Chem A 3:2762–2769CrossRefGoogle Scholar
  32. 32.
    Al-Mamun M, Zhang H, Liu P, Wang Y, Cao J, Zhao H (2014) Directly hydrothermal growth of ultrathin MoS2 nanostructured films as high performance counter electrodes for dye-sensitised solar cells. RSC Adv 4:21277–21283CrossRefGoogle Scholar
  33. 33.
    Xiao J, Wang X, Yang XQ, Xun S, Liu G, Koech PK, Lemmon JP (2011) Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv Funct Mater 21:2840–2846CrossRefGoogle Scholar
  34. 34.
    Shu H, Li F, Hu C, Liang P, Cao D, Chen X (2016) The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries. Nanoscale 8:2918–2926CrossRefPubMedGoogle Scholar
  35. 35.
    Wang L, Xu Z, Wang W, Bai X (2014) Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J Am Chem Soc 136:6693–6697CrossRefPubMedGoogle Scholar
  36. 36.
    Feng C, Ma J, Li H, Zeng R, Guo Z, Liu H (2009) Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater Res Bull 44:811–1815Google Scholar
  37. 37.
    Hu L, Lin C, Wang C, Yang C, Li J, Chen Y, Lin S (2016) TiNb2O7 nanorods as a novel anode material for secondary lithium-ion batteries. Funct Mater Lett 9:1642004CrossRefGoogle Scholar
  38. 38.
    Guo X, Yin P, Wang Z, Yang H (2018) Template-assisted sol–gel synthesis of porous MoS2/C nanocomposites as anode materials for lithium-ion batteries. J Sol-Gel Sci Technol 85:140–148CrossRefGoogle Scholar
  39. 39.
    Zhang L, Lou XW (2014) Hierarchical MoS2 shells supported on carbon spheres for highly reversible lithium storage. Chem Eur J 20:5219–5223CrossRefPubMedGoogle Scholar
  40. 40.
    Wei M, Wei K, Ichihara M, Zhou H (2008) Nb2O5 nanobelts: a lithium intercalation host with large capacity and high rate capability. Electrochem Commun 10:980–983CrossRefGoogle Scholar
  41. 41.
    Du J, Wu H, Wang X, Qi C, Mao W, Ren T, Yang Z (2018) Ternary MoS2/MoO3/C nanosheets as high-performance anode materials for lithium-ion batteries. J Electron Mater 47:6767–6773CrossRefGoogle Scholar
  42. 42.
    Wu M, Xia S, Ding J, Zhao B, Jiao Y, Du A, Zhang H (2018) Growth of MoS2 nanoflowers with expanded interlayer distance onto N-doped graphene for reversible lithium storage. ChemElectroChem 5:2263–2270CrossRefGoogle Scholar
  43. 43.
    Yu XY, Yu L, Lou XW (2017) Hollow nanostructures of molybdenum sulfides for electrochemical energy storage and conversion. Small Methods 1:1600020CrossRefGoogle Scholar
  44. 44.
    Yang L, Wang S, Mao J, Deng J, Gao Q, Tang Y, Schmidt OG (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yueqiu Gong
    • 1
    • 2
    • 3
    Email author
  • Hongyi Chen
    • 1
  • Lunjun Gong
    • 1
    • 2
  • Shuhong Xie
    • 1
    • 3
  1. 1.School of Materials Science and EngineeringXiangtan UniversityXiangtanChina
  2. 2.Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and EngineeringXiangtan UniversityXiangtanChina
  3. 3.Key Laboratory of Low-Dimensional Materials and Application TechnologyXiangtan UniversityXiangtanChina

Personalised recommendations