Advertisement

Ionics

, Volume 25, Issue 9, pp 4219–4229 | Cite as

A comparative study of Nafion and sulfonated poly(ether ether ketone) membrane performance for iron-chromium redox flow battery

  • Chuan-Yu Sun
  • Huan ZhangEmail author
  • Xu-Dong Luo
  • Na Chen
Original Paper
  • 141 Downloads

Abstract

A low-cost sulfonated poly(ether ether ketone) (SPEEK) membrane with optimized degree of sulfonation (DS) has been successfully synthesized and applied in iron-chromium redox flow battery (ICRFB) in comparison with Nafion membrane. The SPEEK membrane with an optimum DS of 55% exhibits the cell performance of CE 98.53% and EE 79.13% at 80 mA cm−2 due to its longer charge retention and lower metallic ion crossover, while Nafion 115 membrane exhibits the cell performance of CE 95.97% and EE 82.33%. In addition, the SPEEK membrane demonstrates stable cell performance with slower discharge capacity decline, lower self-discharge rate, and highly stable efficiency. SPEEK membrane performs superior chemical stability in the highly oxidizing electrolytes as well, which is comparable to Nafion 115. Furthermore, the capital cost of ICRBF with SPEEK membrane occupies 5% of the overall system cost, which is 34% lower than that of ICRFB with Nafion membrane for 1 MW-8 h energy storage system.

Keywords

Iron-chromium redox flow battery (ICRFB) Ion-exchange membrane (IEM) Sulfonated poly(ether ether ketone) (SPEEK) Nafion Low cost 

Notes

Acknowledgements

Chuan-Yu Sun gratefully acknowledges the kind support from the 157 Group, especially Mr. Hu-Bing Xiao and Prof. Bin Jiang for their care and sharing.

Funding information

This work was financially supported by National Natural Science Funds of China (Grant No. 51702144), the Fundamental Research Funds for the Colleges and Universities in Liaoning Province (2017LNQN15).

References

  1. 1.
    Kim KJ, Park M-S, Kim Y-J, Kim JH, Dou SX, Skyllas-Kazacos M (2015) A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries[J]. J Mater Chem A 3:16913–16933CrossRefGoogle Scholar
  2. 2.
    Zeng YK, Zhou XL, An L, Wei L, Zhao TS (2016) A high-performance flow-field structured iron-chromium redox flow battery[J]. J Power Sources 324:738–744CrossRefGoogle Scholar
  3. 3.
    Zeng YK, Li FH, Lu F et al (2019) A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries[J]. Appl Energy 238:435–441CrossRefGoogle Scholar
  4. 4.
    Zeng YK, Zhao TS, Zhou XL, Zeng L, Wei L (2016) The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries[J]. Appl Energy 182:204–209CrossRefGoogle Scholar
  5. 5.
    Zhang H, Tan Y, Li JY et al (2017) Studies on properties of rayon-and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance[J]. Electrochim Acta 248:603–613CrossRefGoogle Scholar
  6. 6.
    Hollax E, Cheng DS (1985) The influence of oxidative pretreatment of graphite electrodes on the catalysis of the Cr3+/Cr2+ and Fe3+/Fe2+ redox reactions[J]. Carbon 23(6):655–664CrossRefGoogle Scholar
  7. 7.
    Wang N, Liu S (2013) Preparation and properties of separation membranes for vanadium redox flow battery[J]. Progress in chemistry 25(1):60–68Google Scholar
  8. 8.
    Lu W, Yuan Z, Zhao Y, Qiao L, Zhang H, Li X (2018) Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application[J]. Energy Storage Materials 10:40–47CrossRefGoogle Scholar
  9. 9.
    Yuan Z, Zhang H, Li X (2018) Ion conducting membranes for aqueous flow battery systems[J]. Chem Commun 54:7550–7558Google Scholar
  10. 10.
    Zhao Y, Lu W, Yuan Z et al (2017) Advanced charged porous membranes with flexible internal crosslinking structures for vanadium flow batteries[J]. J Mater Chem A 5(13):6193–6199CrossRefGoogle Scholar
  11. 11.
    Zhao YY, Zhang HM, Xiao CH et al (2018) Highly selective charged porous membranes with improved ion conductivity[J]. Nano Energy 48:353–360CrossRefGoogle Scholar
  12. 12.
    Yu L, Xi J (2016) Durable and efficient PTFE sandwiched SPEEK membrane for vanadium flow batteries[J]. ACS Appl Mater Interfaces 8(36):23425–23430CrossRefGoogle Scholar
  13. 13.
    Teng X, Yu C, Wu X, Dong Y, Gao P, Hu H, Zhu Y, Dai J (2018) PTFE/SPEEK/PDDA/PSS composite membrane for vanadium redox flow battery application[J]. J Mater Sci 53(7):5204–5215CrossRefGoogle Scholar
  14. 14.
    Yan X, Zhang C, Dai Y, Zheng W, Ruan X, He G (2017) A novel imidazolium-based amphoteric membrane for high-performance vanadium redox flow battery[J]. J Membr Sci 544:98–107CrossRefGoogle Scholar
  15. 15.
    Bokun VC, Kritskaya DA, Abdrashitov EF, Ponomarev AN, Sanginov EA, Yaroslavtsev AB, Dobrovol’skii YA (2015) Proton conductivity of perfluorinated and nanocomposite ion exchange membranes in aqueous and water-methanol solutions[J]. Russ J Electrochem 51(5):435–441CrossRefGoogle Scholar
  16. 16.
    Kim YS, Oh SH, Kim E et al (2018) Iron-chrome crossover through Nafion membrane in iron-chrome redox flow battery[J]. Korean Chem Eng Res 56(1):24–28Google Scholar
  17. 17.
    Nibel O, Schmidt TJ, Gubler L (2016) Bifunctional ion-conducting polymer electrolyte for the vanadium redox flow battery with high selectivity[J]. J Electrochem Soc 163(13):A2563–A2570CrossRefGoogle Scholar
  18. 18.
    Mu D, Yu L, Liu L, Xi J (2017) Rice paper reinforced sulfonated poly (ether ether ketone) as low-cost membrane for vanadium flow batteries[J]. ACS Sustain Chem Eng 5(3):2437–2444CrossRefGoogle Scholar
  19. 19.
    Xu W, Li X, Cao J, Yuan Z, Zhang H (2014) Morphology and performance of poly (ether sulfone)/sulfonated poly (ether ether ketone) blend porous membranes for vanadium flow battery application[J]. RSC Adv 4(76):40400–40406CrossRefGoogle Scholar
  20. 20.
    Yan X, Sun J, Gao L, Zheng W, Dai Y, Ruan X, He G (2018) A novel long-side-chain sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide) membrane for vanadium redox flow battery[J]. Int J Hydrog Energy 43(1):301–310CrossRefGoogle Scholar
  21. 21.
    Xi J, Li Z, Yu L, Yin B, Wang L, Liu L, Qiu X, Chen L (2015) Effect of degree of sulfonation and casting solvent on sulfonated poly (ether ether ketone) membrane for vanadium redox flow battery[J]. J Power Sources 285:195–204CrossRefGoogle Scholar
  22. 22.
    Luo XC, Ye JY, Lu X et al Highly efficient and low cost SPEEK/TiO2 nanocomposite membrane for vanadium redox flow battery[J]. J Nanosci Nanotechnol 19:2247–2252Google Scholar
  23. 23.
    Chang SL, Ye JY, Zhou W et al (2019) A low-cost SPEEK-K type membrane for neutral aqueous zinc-iron redox flow battery[J]. Surf Coat Technol 358:190–194CrossRefGoogle Scholar
  24. 24.
    Ye JY, Cheng YH, Sun LD et al (2019) A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery[J]. J Membr Sci 572:110–118CrossRefGoogle Scholar
  25. 25.
    Dai JC, Teng XG, Song YQ et al (2016) A super thin polytetrafluoroethylene/sulfonated poly (ether ether ketone) membrane with 91% energy efficiency and high stability for vanadium redox flow battery[J]. J Appl Polym Sci 133(26):43593–43600CrossRefGoogle Scholar
  26. 26.
    Yuan Z, Li X, Duan Y, Zhao Y, Zhang H (2015) Highly stable membranes based on sulfonated fluorinated poly (ether ether ketone) s with bifunctional groups for vanadium flow battery application[J]. Polym Chem 6(30):5385–5392CrossRefGoogle Scholar
  27. 27.
    Aziz MA, Shanmugam S (2017) Ultra-high proton/vanadium selectivity of a modified sulfonated poly (arylene ether ketone) composite membrane for all vanadium redox flow batteries[J]. J Mater Chem A 5(32):16663–16671CrossRefGoogle Scholar
  28. 28.
    Zhang J, Wang G, Wang F, F et al (2016) Sulfonated poly (ether ether ketone)/TiO2 double-deck membrane for vanadium redox flow battery application[J]. J Electroanal Chem 783:76–81Google Scholar
  29. 29.
    Yin B, Yu L, Jiang B, Wang L, Xi J (2016) Nano oxides incorporated sulfonated poly (ether ether ketone) membranes with improved selectivity and stability for vanadium redox flow battery[J]. J Solid State Electrochem 20(5):1271–1283CrossRefGoogle Scholar
  30. 30.
    Su L, Zhang D, Peng S, Wu X, Luo Y, He G (2017) Orientated graphene oxide/Nafion ultra-thin layer coated composite membranes for vanadium redox flow battery[J]. Int J Hydrog Energy 42(34):21806–21816CrossRefGoogle Scholar
  31. 31.
    Arslanova AA, Sanginov EA, Dobrovol’skii YA (2018) New composite proton-conducting membranes based on Nafion and cross-linked sulfonated polystyrene[J]. Russ J Electrochem 54(3):318–323CrossRefGoogle Scholar
  32. 32.
    Dai J, Dong Y, Yu C, Liu Y, Teng X (2018) A novel Nafion-g-PSBMA membrane prepared by grafting zwitterionic SBMA onto Nafion via SI-ATRP for vanadium redox flow battery application[J]. J Membr Sci 554:324–330CrossRefGoogle Scholar
  33. 33.
    Hodakovska J, Kleperis J, Grinberga L, Vaivars G (2009) Conductivity measurement of different polymer membranes for fuel cells[J]. Russ J Electrochem 45(6):657–661CrossRefGoogle Scholar
  34. 34.
    Li Z, Liu L, Yu L, Wang L, Xi J, Qiu X, Chen L (2014) Characterization of sulfonated poly (ether ether ketone)/poly (vinylidene fluoride-co-hexafluoropropylene) composite membrane for vanadium redox flow battery application[J]. J Power Sources 272:427–435CrossRefGoogle Scholar
  35. 35.
    Wang G, Zhang JC, Zhang J et al (2017) Sulfonated poly (ether ether ketone)/poly (vinylidene fluoride)/graphene composite membrane for a vanadium redox flow battery[J]. J Solid State Electrochem 21(4):1185–1194CrossRefGoogle Scholar
  36. 36.
    Kim J, Lee Y, Jeon JD, Kwak SY (2018) Ion-exchange composite membranes pore-filled with sulfonated poly (ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries[J]. J Power Sources 383:1–9CrossRefGoogle Scholar
  37. 37.
    Pezeshki AM, Clement JT, Veith GM, Zawodzinski TA, Mench MM (2015) High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation[J]. J Power Sources 294:333–338CrossRefGoogle Scholar
  38. 38.
    Lim MH, Park MJ, Kim SC, Roh SH, Jung SH, Kim HT, Jung HY (2017) Chemical degradation of commercial polymer electrolyte membrane for vanadium redox flow battery (VRFB)[J]. J Nanosci Nanotechnol 17(8):5788–5791CrossRefGoogle Scholar
  39. 39.
    Cao LY, Kronander A, Tang A et al (2016) Membrane permeability rates of vanadium ions and their effects on temperature variation in vanadium redox batteries[J]. Energies 9(12):1058–1065CrossRefGoogle Scholar
  40. 40.
    Zaidi SJ, Mikhailenko SD, Robertson GP et al (2000) Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications[J]. J Membr Sci 173(1):17–34CrossRefGoogle Scholar
  41. 41.
    Li L, Zhang J, Wang Y (2003) Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell[J]. J Membr Sci 226(1–2):159–167CrossRefGoogle Scholar
  42. 42.
    Zheng L, Wang H, Niu R, Zhang Y, Shi H (2018) Sulfonated poly (ether ether ketone)/sulfonated graphene oxide hybrid membrane for vanadium redox flow battery[J]. Electrochim Acta 282:437–447CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Chen J, Zhang J, Wang G, Zhang J, Zhu X, Wang R (2016) Sulfonated poly (ether ether ketone)/poly (vinylidene fluoride)/tungstophosphoric acid membrane for vanadium redox flow battery application[J]. High Perform Polym 28(6):735–740CrossRefGoogle Scholar
  44. 44.
    J. X, W. Dai, L. Yu. Polydopamine coated SPEEK membrane for a vanadium redox flow battery[J]. RSC Adv, 2015, 5(42):33400–33406Google Scholar
  45. 45.
    Jung HY, Cho MS, Sadhasivam T, Kim JY, Roh SH, Kwon Y (2018) High ionic selectivity of low permeable organic composite membrane with amphiphilic polymer for vanadium redox flow batteries[J]. Solid State Ionics 324:69–76CrossRefGoogle Scholar
  46. 46.
    Teng X, Dai J, Bi F, Jiang X, Song Y, Yin G (2015) Ultra-thin polytetrafluoroethene/Nafion/silica membranes prepared with nano SiO2 and its comparison with sol-gel derived one for vanadium redox flow battery[J]. Solid State Ionics 280:30–36CrossRefGoogle Scholar
  47. 47.
    Zeng YK, Zhao TS, Zhou XL et al (2017) A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries[J]. J Power Sources 352:77–82CrossRefGoogle Scholar
  48. 48.
    Chen D, Chen X, Ding L, Li X (2018) Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application[J]. J Membr Sci 553:25–31CrossRefGoogle Scholar
  49. 49.
    Yuan Z, Li X, Hu J, Xu W, Cao J, Zhang H (2014) Degradation mechanism of sulfonated poly (ether ether ketone)(SPEEK) ion exchange membranes under vanadium flow battery medium[J]. Phys Chem Chem Phys 16(37):19841–19847CrossRefGoogle Scholar
  50. 50.
    Zeng YK, Zhao TS, An L et al (2015) A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage[J]. J Power Sources 300:438–443CrossRefGoogle Scholar
  51. 51.
    Matthäa Verena HOLLAND-CUNZ, Faye CORDING, Jochen FRIEDL et al (2018) Redox flow batteries—concepts and chemistries for cost-effective energy storage[J]. Front Energy 12(2):198–224CrossRefGoogle Scholar
  52. 52.
    Minke C (2019) Miguel a. Dorantes Ledesma. Impact of cell design and maintenance strategy on life cycle costs of vanadium redox flow batteries[J]. J Energy Storage 21:571–580CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chuan-Yu Sun
    • 2
  • Huan Zhang
    • 1
    Email author
  • Xu-Dong Luo
    • 1
  • Na Chen
    • 1
  1. 1.School of High Temperature Materials and Magnesium Resource EngineeringUniversity of Science and Technology LiaoningAnshanChina
  2. 2.School of Materials Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations