Advertisement

Ionics

pp 1–10 | Cite as

Hierarchical micro-mesoporous carbon prepared from waste cotton textile for lithium-sulfur batteries

  • Zhijin Wang
  • Dan Xue
  • Hongjia SongEmail author
  • Xiangli Zhong
  • Jinbin WangEmail author
  • Pengfei Hou
Original Paper
  • 28 Downloads

Abstract

As the next generation battery, the lithium-sulfur battery with high theoretical specific capacity and energy density needs to overcome the low practical discharge capacity and the poor cycle performance for the poor conductivity of sulfur and the shuttle effect of polysulfide. In this study, a hierarchical micro-mesoporous carbon (HPC) is designed and synthesized as a sulfur host from the cotton textile with KOH activation at 700 °C to combine the advantages of these two structures, where mesoporous structure can improve the infiltration of electrolyte to act as fast ionic channel and micropores have an excellent ability of binding sulfur. The HPC showed an excellent high specific surface area (2835.47 m2 g−1) and a high pore volume (2.82 cm3 g−1), and the ratio of the mesoporous reaches 57.85%. The sulfur in HPC/S was uniformly distributed in the host structure and no surface crystallization was observed by TEM characterization. Assembled in the lithium-sulfur battery, the cathode mixed with HPC/S and conductive agent delivers an initial discharge capacity of 1577 mAh g−1 at 0.1C, and a reversible capacity of 434.5 mAh g−1 after 300 cycles at the current rate of 1C.

Keywords

KOH activation Cotton textile Hierarchical micro-mesoporous carbon Lithium-sulfur battery 

Notes

Acknowledgments

This work was financially supported by the Hunan Provincial Natural Science Foundation of China (No. 2018JJ3506 and 2017JJ3068), the general project of Hunan Provincial Department of Education (No. 17C1517 and 16C0623), and the National Natural Science Foundation of China (51572233, 61574121 and 11847106).

References

  1. 1.
    Ma L, Hendrickson KE, Wei S, Archer LA (2015) Nanomaterials: science and applications in the lithium–sulfur battery. Nano Today 10:315–338CrossRefGoogle Scholar
  2. 2.
    Manthiram A, Chung SH, Zu C (2015) Lithium-sulfur batteries: progress and prospects. Adv Mater 27:1980–2006CrossRefGoogle Scholar
  3. 3.
    Su YS, Fu Y, Guo B, Dai S, Manthiram A (2013) Fast, reversible lithium storage with a sulfur/long-chain-polysulfide redox couple. Chemistry 19:8621–8626CrossRefGoogle Scholar
  4. 4.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29CrossRefGoogle Scholar
  5. 5.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302CrossRefGoogle Scholar
  6. 6.
    Ahn W, Kim K-B, Jung K-N, Shin K-H, Jin C-S (2012) Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J Power Sources 202:394–399CrossRefGoogle Scholar
  7. 7.
    Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed Eng 50:5904–5908CrossRefGoogle Scholar
  8. 8.
    Liu M, Qin X, He Y-B, Li B, Kang F (2017) Recent innovative configurations in high-energy lithium–sulfur batteries. J Mater Chem A 5:5222–5234CrossRefGoogle Scholar
  9. 9.
    Su D, Zhou D, Wang C, Wang G (2018) Toward high performance lithium–sulfur batteries based on Li2S cathodes and beyond: status, challenges, and perspectives. Adv Funct Mater 28(38):1800154Google Scholar
  10. 10.
    Zhang L, Wang Y, Niu Z, Chen J (2018) Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon.  https://doi.org/10.1016/j.carbon.2018.09.067
  11. 11.
    Kong L, Peng H-J, Huang J-Q, Zhang Q (2017) Review of nanostructured current collectors in lithium–sulfur batteries. Nano Res 10:4027–4054CrossRefGoogle Scholar
  12. 12.
    Chen Y, Lu S, Zhou J, Wu X, Qin W, Ogoke O, Wu G (2017) 3D graphene framework supported Li2S coated with ultra-thin Al2O3films: binder-free cathodes for high-performance lithium sulfur batteries. J Mater Chem A 5:102–112CrossRefGoogle Scholar
  13. 13.
    He J, Luo L, Chen Y, Manthiram A (2017) Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv Mater 29:1702707CrossRefGoogle Scholar
  14. 14.
    Hwa Y, Seo HK, Yuk JM, Cairns EJ (2017) Freeze-dried sulfur–graphene oxide–carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells. Nano Lett 17:7086–7094CrossRefGoogle Scholar
  15. 15.
    Pei F, Lin L, Ou D, Zheng Z, Mo S, Fang X, Zheng N (2017) Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat Commun 8:482CrossRefGoogle Scholar
  16. 16.
    Zhang H, Gao Q, Qian W, Xiao H, Li Z, Ma L, Tian X (2018) Binary hierarchical porous graphene/pyrolytic carbon nanocomposite matrix loaded with sulfur as a high-performance Li–S battery cathode. ACS Appl Mater Interfaces 10:18726–18733CrossRefGoogle Scholar
  17. 17.
    Zhong Y, Chao D, Deng S, Zhan J, Fang R, Xia Y, Wang Y, Wang X, Xia X, Tu J (2018) Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries. Adv Funct Mater 28:1706391CrossRefGoogle Scholar
  18. 18.
    Li Z, Huang Y, Yuan L, Hao Z, Huang Y (2015) Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 92:41–63CrossRefGoogle Scholar
  19. 19.
    Xu X, Zhou D, Qin X, Lin K, Kang F, Li B, Shanmukaraj D, Rojo T, Armand M, Wang G (2018) A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nat Commun 9:3870CrossRefGoogle Scholar
  20. 20.
    Guo J, Zhang J, Jiang F, Zhao S, Su Q, Du G (2015) Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries. Electrochim Acta 176:853–860CrossRefGoogle Scholar
  21. 21.
    Zhang J, Xiang J, Dong Z, Liu Y, Wu Y, Xu C, Du G (2014) Biomass derived activated carbon with 3D connected architecture for rechargeable lithium−sulfur batteries. Electrochim Acta 116:146–151CrossRefGoogle Scholar
  22. 22.
    Wu F, Zhao E, Gordon D, Xiao Y, Hu C, Yushin G (2016) Infiltrated porous polymer sheets as free-standing flexible lithium-sulfur battery electrodes. Adv Mater 28:6365–6371CrossRefGoogle Scholar
  23. 23.
    Chung SH, Manthiram A (2018) Rational design of statically and dynamically stable lithium-sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio. Adv Mater 30:1705951CrossRefGoogle Scholar
  24. 24.
    Zhao S, Fang R, Sun Z, Wang S, Veder J-P, Saunders M, Cheng H-M, Liu C, Jiang SP, Li F (2018) A 3D multifunctional architecture for lithium-sulfur batteries with high areal capacity. Small Methods 2:1800067CrossRefGoogle Scholar
  25. 25.
    Zhai S, Karahan HE, Wei L, Qian Q, Harris AT, Minett AI, Ramakrishna S, Ng AK, Chen Y (2016) Textile energy storage: structural design concepts, material selection and future perspectives. Energy Storage Materials 3:123–139Google Scholar
  26. 26.
    Bandosz TJ, Ren T-Z (2017) Porous carbon modified with sulfur in energy related applications. Carbon 118:561–577CrossRefGoogle Scholar
  27. 27.
    Borchardt L, Oschatz M, Kaskel S (2016) Carbon materials for lithium sulfur batteries-ten critical questions. Chemistry 22:7324–7351CrossRefGoogle Scholar
  28. 28.
    Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ (2012) Smaller sulfur molecules promise better lithium–sulfur batteries. J Am Chem Soc 134:18510–18513CrossRefGoogle Scholar
  29. 29.
    Xu Z-L, Kim J-K, Kang K (2018) Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19:84–107CrossRefGoogle Scholar
  30. 30.
    Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao D (2012) A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem 22:93–99CrossRefGoogle Scholar
  31. 31.
    Marsh H, Reinoso FR (2006) Activated carbon. Elsevier, AmsterdamGoogle Scholar
  32. 32.
    Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, Suppes G, Wexler C, Pfeifer P (2012) Nanospace engineering of KOH activated carbon. Nanotechnology 23:015401CrossRefGoogle Scholar
  33. 33.
    Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem Mater 13:3169–3183CrossRefGoogle Scholar
  34. 34.
    Hu Z, Srinivasan MP (2001) Mesoporous high-surface-area activated carbon. Microporous Mesoporous Mater 43:267–275CrossRefGoogle Scholar
  35. 35.
    Mi K, Chen S, Xi B, Kai S, Jiang Y, Feng J, Qian Y, Xiong S (2017) Sole chemical confinement of polysulfides on nonporous nitrogen/oxygen dual-doped carbon at the kilogram scale for lithium-sulfur batteries. Adv Funct Mater 27:1604265CrossRefGoogle Scholar
  36. 36.
    Wang N, Xu Z, Xu X, Liao T, Tang B, Bai Z, Dou S (2018) Synergistically enhanced interfacial interaction to polysulfide via N,O dual-doped highly porous carbon microrods for advanced lithium–sulfur batteries. ACS Appl Mater Interfaces 10:13573–13580CrossRefGoogle Scholar
  37. 37.
    Zhao S, Li C, Wang W, Zhang H, Gao M, Xiong X, Wang A, Yuan K, Huang Y, Wang F (2013) A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries. J Mater Chem A 1:3334–3339CrossRefGoogle Scholar
  38. 38.
    Han J, Li Y, Li S, Long P, Cao C, Cao Y, Wang W, Feng Y, Feng W (2018) A low cost ultra-microporous carbon scaffold with confined chain-like sulfur molecules as a superior cathode for lithium–sulfur batteries. Sustainable Energy & Fuels 2(10):2187–2196Google Scholar
  39. 39.
    Son MY, Choi JH, Kang YC (2014) Electrochemical properties of bare nickel sulfide and nickel sulfide–carbon composites prepared by one-pot spray pyrolysis as anode materials for lithium secondary batteries. J Power Sources 251:480–487CrossRefGoogle Scholar
  40. 40.
    Barchasz C, Molton F, Duboc C, Lepretre JC, Patoux S, Alloin F (2012) Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem 84:3973–3980CrossRefGoogle Scholar
  41. 41.
    Su Y-S, Manthiram A (2012) A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium–sulfur batteries. Electrochim Acta 77:272–278CrossRefGoogle Scholar
  42. 42.
    Liu M, Li Q, Qin X, Liang G, Han W, Zhou D, He Y-B, Li B, Kang F (2017) Suppressing self-discharge and shuttle effect of lithium–sulfur batteries with V2O5-decorated carbon nanofiber interlayer. Small 13(12):1602539Google Scholar
  43. 43.
    Zhou G, Yin L-C, Wang D-W, Li L, Pei S, Gentle IR, Li F, Cheng H-M (2013) Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 7:5367–5375CrossRefGoogle Scholar
  44. 44.
    Li G, Wang S, Zhang Y, Li M, Chen Z, Lu J (2018) Adv Mater 30:e1705590CrossRefGoogle Scholar
  45. 45.
    Cheng JJ, Pan Y, Pan JA, Song HJ, Ma ZS (2015) Sulfur/bamboo charcoal composites cathode for lithium–sulfur batteries. RSC Adv 5:68–74CrossRefGoogle Scholar
  46. 46.
    Gu X, Wang Y, Lai C, Qiu J, Li S, Hou Y, Martens W, Mahmood N, Zhang S (2015) Microporous bamboo biochar for lithium-sulfur batteries. Nano Res 8:129–139CrossRefGoogle Scholar
  47. 47.
    Vu D-L, Seo J-S, Lee H-Y, Lee J-W (2017) Activated carbon with hierarchical micro–mesoporous structure obtained from rice husk and its application for lithium–sulfur batteries. RSC Adv 7:4144–4151CrossRefGoogle Scholar
  48. 48.
    Lu S, Chen Y, Zhou J, Wang Z, Wu X, Gu J, Zhang X, Pang A, Jiao Z, Jiang L (2016) A sheet-like carbon matrix hosted sulfur as cathode for high-performance lithium-sulfur batteries. Sci Rep 6:20445CrossRefGoogle Scholar
  49. 49.
    Ji S, Imtiaz S, Sun D, Xin Y, Li Q, Huang T, Zhang Z, Huang Y (2017) Coralline-like N-doped hierarchically porous carbon derived from enteromorpha as a host matrix for lithium-sulfur battery. Chem Eur J 23:18208–18215CrossRefGoogle Scholar
  50. 50.
    Hou TZ, Chen X, Peng HJ, Huang JQ, Li BQ, Zhang Q, Li B (2016) Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 12:3283–3291CrossRefGoogle Scholar
  51. 51.
    Geng X, Liao Y, Rao M, Li X, Li W (2015) Mesoporous carbon-sulfur composite as cathode for lithium-sulfur battery. Ionics 21:645–650CrossRefGoogle Scholar
  52. 52.
    Li G, Jing H, Li H, Liu L, Wang Y, Yuan C, Jiang H, Chen L (2015) Sulfur/microporous carbon composites for Li-S battery. Ionics 21:2161–2170CrossRefGoogle Scholar
  53. 53.
    Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang J-G, Schwenzer B, Liu J (2011) Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem 21:16603–16610CrossRefGoogle Scholar
  54. 54.
    Qin X, Wu J, Xu Z-L, Chong WG, Huang J-Q, Liang G, Li B, Kang F, Kim J-K (2019) Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. Carbon 141:16–24CrossRefGoogle Scholar
  55. 55.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8:500–506CrossRefGoogle Scholar
  56. 56.
    Liang J, Sun Z-H, Li F, Cheng H-M (2016) Carbon materials for Li–S batteries: functional evolution and performance improvement. Energy Storage Materials 2:76–106Google Scholar
  57. 57.
    Liu Y, Cheng M, Guo X, Wu Z, Chen Y, Xiang W, Li J, Zhong B (2017) Synthesis and electrochemical performance of micro-mesoporous carbon-sulfur composite cathode for Li–S batteries. Ionics 23:2951–2960CrossRefGoogle Scholar
  58. 58.
    Zhou D, Chen Y, Li B, Fan H, Cheng F, Shanmukaraj D, Rojo T, Armand M, Wang G (2018) A stable quasi-solid-state sodium-sulfur battery. Angew Chem Int Ed Eng 57:10168–10172CrossRefGoogle Scholar
  59. 59.
    Barsoukov E, Macdonald JR (2018) Impedance spectroscopy:theory, experiment, and applications. Wiley, HobokenCrossRefGoogle Scholar
  60. 60.
    Cañas NA, Hirose K, Pascucci B, Wagner N, Friedrich KA, Hiesgen R (2013) Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim Acta 97:42–51CrossRefGoogle Scholar
  61. 61.
    Deng Z, Zhang Z, Lai Y, Liu J, Li J, Liu Y (2013) Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J Electrochem Soc 160:A553–A558CrossRefGoogle Scholar
  62. 62.
    Qie L, Zu C, Manthiram A (2016) A high energy lithium–sulfur battery with ultrahigh–loading lithium polysulfide cathode and its failure mechanism. Adv Energy Mater 6(7):1502459Google Scholar
  63. 63.
    Chen L, Zhou H, Fu C, Chen Z, Xu C, Kuang Y (2016) Chemical modification of pristine carbon nanotubes and their exploitation as the carbon hosts for lithium-sulfur batteries. Int J Hydrog Energy 41:21850–21860CrossRefGoogle Scholar
  64. 64.
    Zhang Z, Kong L-L, Liu S, Li G-R, Gao X-P (2017) A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv Energy Mater 7:1602543CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringXiangtan UniversityXiangtanChina
  2. 2.Key Laboratory of Low-dimensional Materials and Application TechnologyXiangtan UniversityXiangtanChina

Personalised recommendations