Advertisement

Ionics

, Volume 25, Issue 9, pp 4459–4468 | Cite as

High performance of a carbon monoxide sensor based on a Pd-doped graphene-tin oxide nanostructure composite

  • Aminuddin Debataraja
  • Ni Luh Wulan Septiani
  • Brian YuliartoEmail author
  • Nugraha
  • Bambang Sunendar
  • Huda Abdullah
Original Paper
  • 73 Downloads

Abstract

The polyol method has been employed to fabricate a palladium-doped graphene-tin oxide composite as a highly sensitive and selective carbon monoxide gas sensor. The ratio of graphene-SnO2 which is used in this research is 1:1, while the concentration of Pd doping is varied at 0.1%, 0.5%, and 1%. X-ray diffractometry (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) have been used to analyze crystallinity and morphology of all samples. Thick-film Pd-doped graphene-SnO2 has been fabricated using the spin-coating method on an alumina substrate. Investigation of the effect of Pd doping on a 30-ppm CO sensor shows increasing response from 88.11 to 92.99% after adding 0.1% Pd at a working temperature of 150 °C. At 50 °C, responses of the composite graphene-SnO2 with 0.1%, 0.5%, and 1% Pd are 19.32%, 32.00%, and 24%, respectively. While at 250 °C, sensor responses of graphene-SnO2 composites with 0.1%, 0.5%, and 1% Pd are 99.89%, 92.93%, and 75.06%, respectively. Among the samples, the 0.1% Pd-doped graphene-SnO2 composite shows the highest response; as a result, 0.1% Pd becomes the optimum concentration of Pd doping. Moreover, the 0.1% Pd-doped graphene-SnO2 composite shows good sensor sensitivity at 1.73%/ppm and great selectivity toward CO gas.

Keywords

Carbon monoxide Gas sensor Graphene Nanostructure Palladium noble metal Tin oxide 

Notes

Funding information

This work is financially supported by the ITB research grant, the research grant of Ministry of Research, Technology and Higher Educations, and the World Class Professor (WCP) program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

References

  1. 1.
    Piqueras P, Vizenor A (2016) The rapidly growing death toll attributed to air pollution : a global responsibility. Policy Brief for GSDR:1–4Google Scholar
  2. 2.
    Zhang J, Qin Z, Zeng D, Xie C (2017) Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys Chem Chem Phys 19(9):6313–6329.  https://doi.org/10.1039/C6CP07799D Google Scholar
  3. 3.
    Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors Actuators B Chem 160(1):580–591.  https://doi.org/10.1016/j.snb.2011.08.032 Google Scholar
  4. 4.
    Li T, Zeng W, Wang Z (2015) Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review. Sensors Actuators B Chem 221:1570–1585.  https://doi.org/10.1016/j.snb.2015.08.003 Google Scholar
  5. 5.
    Liu H, Zhou Q, Zhang Q, Hong C, Xu L, Jin L, Chen W (2017) Synthesis, characterization and enhanced sensing properties of a NiO/ZnO p–n junctions sensor for the SF6 decomposition byproducts SO2, SO2F2, and SOF2. Sensors (Basel) 17(4):913.  https://doi.org/10.3390/s17040913 Google Scholar
  6. 6.
    Ghosh S, Narjinary M, Sen A, Bandyopadhyay R, Roy V (2014) Fast detection of low concentration carbon monoxide using calcium-loaded tin oxide sensors. Sens Actuators B:Chem 203:490–496.  https://doi.org/10.1016/j.snb.2014.06.111 Google Scholar
  7. 7.
    Sharma A, Tomar M, Gupta V (2012) Room temperature trace level detection of NO2 gas using SnO2 modified carbon nanotubes based sensor. J Mater Chem 22(44):23608.  https://doi.org/10.1039/C2JM35172B Google Scholar
  8. 8.
    Li W, Wu X, Han N, Chen J, Qian X, Deng Y, Tang W, Chen Y (2016) MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sens Actuators B:Chem 225:158–166.  https://doi.org/10.1016/j.snb.2015.11.034 Google Scholar
  9. 9.
    Zuev VV, Zueva NE, Savelieva ES, Gerasimov VV (2015) The Antarctic ozone depletion caused by Erebus volcano gas emissions. Atmos Environ 122:393–399.  https://doi.org/10.1016/j.atmosenv.2015.10.005 Google Scholar
  10. 10.
    Debataraja A, Muchtar AR, Septiani NLW, Yuliarto B, Nugraha SB (2017) High performance carbon monoxide sensor based on nano composite of SnO2-graphene. IEEE Sensors J 17(24):8297–8305.  https://doi.org/10.1109/JSEN.2017.2764088 Google Scholar
  11. 11.
    Muchtar AR, Septiani NLW, Iqbal M, Nuruddin A, Yuliarto B (2018) Preparation of graphene–zinc oxide nanostructure composite for carbon monoxide gas sensing. J Electron Mater 47(7):3647–3656.  https://doi.org/10.1007/s11664-018-6213-x Google Scholar
  12. 12.
    Kim B, Lu Y, Hannon A, Meyyappan M, Li J (2013) Low temperature Pd/SnO2 sensor for carbon monoxide detection. Sens Actuators B:Chem 177:770–775.  https://doi.org/10.1016/j.snb.2012.11.020 Google Scholar
  13. 13.
    Alharbi ND, Ansari MS, Salah N, Khayyat SA, Khan ZH (2016) Zinc oxide-multi walled carbon nanotubes nanocomposites for carbon monoxide gas sensor application. J Nanosci Nanotechnol 16(1):439–447.  https://doi.org/10.1007/s00339-017-0803-y Google Scholar
  14. 14.
    Ramgir N, Datta N, Kaur M, Kailasaganapathi S, Debnath AK, Aswal DK, Gupta SK (2013) Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloids Surfaces A Physicochem Eng Asp 439:101–116.  https://doi.org/10.1016/j.colsurfa.2013.02.029 Google Scholar
  15. 15.
    Brinzari V, Korotcenkov G (2018) Kinetic approach to receptor function in chemiresistive gas sensor modeling of tin dioxide. Steady state consideration. Sens Actuators B:Chem 259:443–454.  https://doi.org/10.1016/j.snb.2017.12.023 Google Scholar
  16. 16.
    Dey A (2018) Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B Solid-State Mater Adv Technol 229:206–217.  https://doi.org/10.1016/j.mseb.2017.12.036 Google Scholar
  17. 17.
    Ingole SM, Navale ST, Navale YH, Bandgar DK, Stadler FJ, Mane RS, Ramgir NS, Gupta SK, Aswal DK, Patil VB (2017) Nanostructured tin oxide films: physical synthesis, characterization, and gas sensing properties. J Colloid Interface Sci 493:162–170.  https://doi.org/10.1016/j.jcis.2017.01.025 Google Scholar
  18. 18.
    Korotcenkov G, Cho BK (2017) Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens Actuators B:Chem 244:182–210.  https://doi.org/10.1016/j.snb.2016.12.117 Google Scholar
  19. 19.
    Septiani NLW, Kaneti YV, Yuliarto B, Nugraha, Dipojono HK, Takei T, You J, Yamauchi Y (2018) Hybrid nanoarchitecturing of hierarchical zinc oxide wool-ball-like nanostructures with multi-walled carbon nanotubes for achieving sensitive and selective detection of sulfur dioxide. Sens Actuators B:Chem 261:241–251.  https://doi.org/10.1016/j.snb.2018.01.088 Google Scholar
  20. 20.
    Yadava L, Verma R, Dwivedi R (2010) Sensing properties of CdS-doped tin oxide thick film gas sensor. Sens Actuators B:Chem 144(1):37–42.  https://doi.org/10.1016/j.snb.2009.10.013 Google Scholar
  21. 21.
    Morais EA, Scalvi LVA, Ravaro LP (2009) Optical emission and electron capture of rare-earth trivalent ions located at distinct sites in SnO2 thin films. Phys Procedia 2(2):353–364.  https://doi.org/10.1016/j.phpro.2009.07.020 Google Scholar
  22. 22.
    Lin Z, Guo F, Wang C, Wang X, Wang K, Qu Y (2014) Preparation and sensing properties of hierarchical 3D assembled porous ZnO from zinc hydroxide carbonate. RSC Adv 4(10):5122–5129.  https://doi.org/10.1039/C3RA45254A Google Scholar
  23. 23.
    Perveen H, Farrukh MA, Khaleeq-ur-Rahman M, Munir B, Tahir MA (2015) Synthesis, structural properties and catalytic activity of MgO-SnO2 nanocatalysts. Russ J Phys Chem A 89(1):99–107.  https://doi.org/10.1134/S0036024415010094 Google Scholar
  24. 24.
    Cheng L, Shao MW, Chen D, Duo Ma DD, Lee ST (2010) SnO2 nanowires with strong yellow emission and their application in photoswitches. CrystEngComm 12(5):1536–1539.  https://doi.org/10.1039/B911664H Google Scholar
  25. 25.
    Yamazoe N, Suematsu K, Shimanoe K (2016) Surface chemistry of neat tin oxide sensor for response to hydrogen gas in air. Sens Actuators B:Chem 227:403–410.  https://doi.org/10.1016/j.snb.2015.12.064 Google Scholar
  26. 26.
    Kozhushner MA, Trakhtenberg LI, Landerville AC, Oleynik II (2013) Theory of sensing response of nanostructured tin-dioxide thin films to reducing hydrogen gas. J Phys Chem C 117(22):11562–11568.  https://doi.org/10.1021/jp311847j Google Scholar
  27. 27.
    Kida T, Fujiyama S, Suematsu K, Yuasa M, Shimanoe K (2013) Pore and particle size control of gas sensing films using SnO2 nanoparticles synthesized by seed-mediated growth: design of highly sensitive gas sensors. J Phys Chem C 117(34):17574–17582.  https://doi.org/10.1021/jp4045226 Google Scholar
  28. 28.
    Singh S, Srivastava VC, Lo SL, Mandal TK, Naresh G (2017) Morphology-controlled green approach for synthesizing the hierarchical self-assembled 3D porous ZnO superstructure with excellent catalytic activity. Microporous Mesoporous Mater 239:296–309.  https://doi.org/10.1016/j.micromeso.2016.10.016 Google Scholar
  29. 29.
    Wang X, Liu W, Liu J, Wang F, Kong J, Qiu S, He C, Luan L (2012) Synthesis of nestlike ZnO hierarchically porous structures and analysis of their gas sensing properties. ACS Appl Mater Interfaces 4(2):817–825.  https://doi.org/10.1021/am201476b Google Scholar
  30. 30.
    Kim HJ, Lee JH (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B:Chem 192:607–627.  https://doi.org/10.1016/j.snb.2013.11.005 Google Scholar
  31. 31.
    Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors Actuators B Chem 173:1–21.  https://doi.org/10.1016/j.snb.2012.07.092 Google Scholar
  32. 32.
    Llobet E (2013) Gas sensors using carbon nanomaterials: a review. Sens Actuators B:Chem 179:32–45.  https://doi.org/10.1016/j.snb.2012.11.014 Google Scholar
  33. 33.
    Neri G, Leonardi SG, Latino M, Donato N, Baek S, Conte DE, Russo PA, Pinna N (2013) Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens Actuators B:Chem 179(2):61–68.  https://doi.org/10.1016/j.snb.2012.10.031 Google Scholar
  34. 34.
    Sur UK (2012) Graphene: a rising star on the horizon of materials science. Int J Electrochem 2012:1–12.  https://doi.org/10.1155/2012/237689 Google Scholar
  35. 35.
    Tung TT, Nine MJ, Krebsz M, Pasisnzki T, Coghlan CJ, Tran DNH, Losic D (2017) Recent advances in sensing applications of graphene assemblies and their composites. Adv Funct Mater 27(46):1–57.  https://doi.org/10.1002/adfm.201702891 Google Scholar
  36. 36.
    Manivannan N, Balachandran W, Celik N (2015) Graphene-based biosensors: methods, analysis and future perspectives. IET Circuits, Devices Syst 9(6):434–445.  https://doi.org/10.1049/iet-cds.2015.0235 Google Scholar
  37. 37.
    Inyawilert K, Wisitsoraat A, Sriprachaubwong C, Tuantranont A, Phanichphant S, Liewhiran C (2015) Rapid ethanol sensor based on electrolytically-exfoliated graphene-loaded flame-made in-doped SnO2 composite film. Sens Actuators B:Chem 209(2):40–55.  https://doi.org/10.1016/j.snb.2014.11.086 Google Scholar
  38. 38.
    Ni Z, Wang Y, Yu T, Shen Z (2008) Raman spectroscopy and imaging of graphene. Nano Res 1(4):273–291.  https://doi.org/10.1007/s12274-008-8036-1 Google Scholar
  39. 39.
    Gautam S, Kumar D, Alegaonkar PS, Jha P, Jain N, Rawat JS (2018) Enhanced response and improved selectivity for toxic gases with functionalized CNT thin film resistors. Integr Ferroelectr 186(1):65–70.  https://doi.org/10.1080/10584587.2017.1369749 Google Scholar
  40. 40.
    Kasthurirengan S, Behera U, Nadig DS, Weisend JG (2010) Palladium doped tin oxide based hydrogen gas sensors for safety applications. AIP Conference Proceedings 1218:1239–1246.  https://doi.org/10.1063/1.3422291 Google Scholar
  41. 41.
    Kaneti YV, Zhang X, Liu M, Yu D, Yuan Y, Aldous L, Jiang X (2016) Experimental and theoretical studies of gold nanoparticle decorated zinc oxide nanoflakes with exposed {1 0 1¯ 0} facets for butylamine sensing. Sens Actuators B:Chem 230:581–591.  https://doi.org/10.1016/j.snb.2016.02.091 Google Scholar
  42. 42.
    Yang X, Salles V, Kaneti YV, Liu M, Maillard M, Journet C, Jiang X, Brioude A (2015) Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning. Sens Actuators B:Chem 220:1112–1119.  https://doi.org/10.1016/j.snb.2015.05.121 Google Scholar
  43. 43.
    Ozturk S, Kosemen A, Kosemen ZA, Kilinc N, Ozturk ZZ, Penza M (2016) Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors. Sens Actuators B:Chem 222:280–289.  https://doi.org/10.1016/j.snb.2015.08.083 Google Scholar
  44. 44.
    Al-Hadeethi Y, Umar A, Ibrahim AA, Al-Heniti S, Kumar S, Baskoutas S, Raffah BM (2017) Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles. Ceram Int 43(9):6765–6770.  https://doi.org/10.1016/j.ceramint.2017.02.088 Google Scholar
  45. 45.
    Dhall S, Jaggi N (2015) Room temperature hydrogen gas sensing properties of Pt sputtered F-MWCNTs/SnO2 network. Sens Actuators B:Chem 210:742–747.  https://doi.org/10.1016/j.snb.2015.01.031 Google Scholar
  46. 46.
    Seema H, Kemp KC, Chandra V, Kim KS (2012) Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology 23(35):355705.  https://doi.org/10.1088/0957-4484/23/35/355705 Google Scholar
  47. 47.
    Qin TR, Qun GY, Hua ZJ, Yue L, Feng T, Jie SW (2011) Synthesis, characterization and gas-sensing properties of Pd-doped SnO 2 nano particles. Transactions of Nonferrous Metals Society of China (English Edition) 21(7):1568–1573.  https://doi.org/10.1016/S1003-6326(11)60898-4 Google Scholar
  48. 48.
    Pavelko RG, Vasiliev AA, Guirado FG, Barrabes N, Llorca J, Llobet E, Sevastyanov VG (2010) Crystallite growth kinetics of highly pure nanocrystalline tin dioxide: the effect of palladium doping. Mater Chem Phys 121(1–2):267–273.  https://doi.org/10.1016/j.matchemphys.2010.01.034 Google Scholar
  49. 49.
    Li W, Shen C, Wu G, Ma Y, Gao Z, Xia X, Du G (2011) New model for Pd-doped SnO2-based CO gas sensor and catalyst studied by online in-situ X-ray photoelectron spectroscopy. J Phys Chem C 115:21258–21263.  https://doi.org/10.1021/jp2068733 Google Scholar
  50. 50.
    Septiani NLW, Yuliarto B, Nugraha DHK (2017) Multiwalled carbon nanotubes–zinc oxide nanocomposites as low temperature toluene gas sensor. Appl Phys A Mater Sci Process 123(3):166.  https://doi.org/10.1007/s00339-017-0803-y Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Aminuddin Debataraja
    • 1
    • 2
  • Ni Luh Wulan Septiani
    • 2
  • Brian Yuliarto
    • 2
    • 3
    Email author
  • Nugraha
    • 2
    • 3
  • Bambang Sunendar
    • 4
  • Huda Abdullah
    • 5
  1. 1.Department of Electrical EngineeringState Polytechnic of JakartaJakartaIndonesia
  2. 2.Advanced Functional Materials Laboratory, Department of Engineering PhysicsInstitut Teknologi BandungBandungIndonesia
  3. 3.Research Center for Nanosciences and NanotechnologyInstitut Teknologi BandungBandungIndonesia
  4. 4.Advanced Materials Processing Laboratory, Department of Engineering PhysicsInstitut Teknologi BandungBandungIndonesia
  5. 5.Centre of Advanced Electronic and Communication Engineering (PAKET)Universiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations