Advertisement

Ionics

, Volume 25, Issue 9, pp 4209–4217 | Cite as

Physically cross-linked xanthan hydrogels as solid electrolytes for Al/air batteries

  • T. M. Di Palma
  • F. Migliardini
  • M. F. Gaele
  • P. CorboEmail author
Original Paper
  • 84 Downloads

Abstract

This paper presents the results of an experimental study aimed at preparing high-conductivity solid electrolytes for Al-air primary cells, starting from an eco-friendly polysaccharide (xanthan) and KOH or HCl concentrated solutions (up to 11 M). Xanthan permits all-solid-state Al-air cells to be prepared with both KOH and HCl solutions but, differently from the already acquired knowledge, the best performance are obtained with acid electrolytes. The results evidence that different formation mechanisms can explain the ionic conductivities of acid and alkaline gels, and then the cell discharge performance. However, the cell capacities at higher current density are enhanced with acid hydrogels, thanks to the capability of xanthan to inhibit the anodic self-corrosion in an acid medium. In particular, a solid electrolyte prepared with 5 M HCl solution and a xanthan/liquid ratio of 0.7 g/ml provides a cell capacity higher than 70 mAh cm−2 at discharge current density of 10 mA cm−2, corresponding to 2.2 Ah gAl−1 consumed (or 1430 Wh kg−1).

Keywords

Xanthan Hydrogels Gel formation mechanism Al/air batteries Hydrogel Raman spectroscopy 

Notes

Funding information

The authors gratefully acknowledge the Italian Ministry of University and Research for the financial support in the Projects PON03PE_00109_1 and the POR Campania FESR 2007-2013 O.O.2.1.

Supplementary material

11581_2019_2965_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1654 kb)

References

  1. 1.
    Liu Y, Sun Q, Li W, Adair KR, Li J, Sun X (2017) A comprehensive review on recent progress in aluminum-air batteries. Green Energ Environ 2:246–277CrossRefGoogle Scholar
  2. 2.
    Finkenstadt VL (2005) Natural polysaccharides as electroactive polymers. Appl Microbiol Biotechnol 67:735–745CrossRefGoogle Scholar
  3. 3.
    Kadokawa J, Murakami M, Takegawa A, Kaneko Y (2009) Preparation of cellulose-starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75:180–183CrossRefGoogle Scholar
  4. 4.
    Yoshida H, Takei F, Sawatari N (2002) High ionic conducting polymer with polysaccharide and its applications. FUJITSU Sci Tech J 38:39–45Google Scholar
  5. 5.
    Liew SY, Juan JC, Lai CW et al (2018) An eco-friendly water-soluble graphene-incorporated agar gel electrolyte for magnesium-air batteries. Ionics 25:1291–1301.  https://doi.org/10.1007/s11581-018-2710-4 CrossRefGoogle Scholar
  6. 6.
    Caldeira I, Lüdtke A, Tavares F, Cholant C, Balboni R, Flores WH, Galio A, Pawlicka A, Avellaneda CO (2018) Ecologically friendly xanthan gum-PVA matrix for solid polymeric electrolytes. Ionics 24(2):413–420CrossRefGoogle Scholar
  7. 7.
    Purwanto M, Atmaja L, Mohamed MA, Salleh MT, Jaafar J, Ismail AF, Santoso M, Widiastuti N (2016) Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells. RSC Adv 6:2314–2322CrossRefGoogle Scholar
  8. 8.
    Colò F, Bella F, Nair JR, Destro M, Gerbaldi C (2015) Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. Electrochim Acta 174:185–190CrossRefGoogle Scholar
  9. 9.
    Isa MIN, Samsudin AS (2016) Potential study of biopolymer-based carboxymethylcellulose electrolytes system for solid-state battery application. Int J Polym Mater Polym Biomater 65:561–567CrossRefGoogle Scholar
  10. 10.
    Syahidah SN, Majid SR (2013) Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors. Electrochim Acta 112:678–685CrossRefGoogle Scholar
  11. 11.
    Vaghela C, Kulkarni M, Haram S, Karve M, Aiyer R (2016) Biopolymer-polyaniline composite for a wide range ammonia gas sensor. IEEE Sensors J 16:4318–4325CrossRefGoogle Scholar
  12. 12.
    Aziz MF, Buraidah MH, Careem MA, Arof AK (2015) PVA based gel polymer electrolytes with mixed iodide salts (K+I- and Bu4N+I-) for dye-sensitized solar cell application. Electrochim Acta 182:217–223CrossRefGoogle Scholar
  13. 13.
    Chiappone A, Bella F, Nair JR, Meligrana G, Bongiovanni R, Gerbaldi C (2014) Structure-performance correlation of nanocellulose-based polymer electrolytes for efficient quasi-solid DSSCs. ChemElectroChem 1:1350–1358CrossRefGoogle Scholar
  14. 14.
    Singh R, Jadhav NA, Majumder S, Bhattacharya B, Singh PK (2013) Novel biopolymer gel electrolyte for dye-sensitized solar cell application. Carbohydr Polym 91:682–685CrossRefGoogle Scholar
  15. 15.
    Xu Y, Zhao Y, Ren J, Zhang Y, Peng H (2016) An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability and high electrochemical performance. Angew Chem 128:8111–8114CrossRefGoogle Scholar
  16. 16.
    Liu Y, Sun Q, Yang X, Liang J, Wang B, Koo A, Li R, Li J, Sun X (2018) High-performance and recyclable Al-air coin cells based on eco-friendly chitosan hydrogel membranes. ACS Appl Mater Interfaces 10:19730–19738CrossRefGoogle Scholar
  17. 17.
    Di Palma TM, Migliardini F, Caputo D, Corbo P (2017) Xanthan and k-carrageenan based alkaline hydrogels as electrolytes for Al/air batteries. Carbohydr Polym 157:122–127CrossRefGoogle Scholar
  18. 18.
    Migliardini F, Di Palma TM, Gaele MF, Corbo P (2018) Solid and acid electrolytes for Al-air batteries based on xanthan-HCl hydrogels. J Solid State Electrochem 22:2901–2916CrossRefGoogle Scholar
  19. 19.
    Bueno VB, Bentini R, Catalani LH, Petri DFS (2013) Synthesis and swelling behaviour of xanthan-based hydrogels. Carbohydr Polym 92:1091–1099CrossRefGoogle Scholar
  20. 20.
    Lieber AC, Mahadevan-Jansen A (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc 57:1363–1367CrossRefGoogle Scholar
  21. 21.
    De Gussem K, De Gelder J, Vandenabeele P, Moens L (2009) The biodata toolbox for MATLAB. Chemom Intell Lab Syst 95:49–52CrossRefGoogle Scholar
  22. 22.
    Tako M (2015) The principle of polysaccharide gels. Adv Biosci Biotechnol 6:22–36CrossRefGoogle Scholar
  23. 23.
    Tako M, Nakamura S (1984) Rheological properties of deacetylated xanthan in aqueous media. Agric Biol Chem 48:2987–2993Google Scholar
  24. 24.
    Saito Y, Okano M, Kubota K, Sakai T, Fujioka J, Kawakami T (2012) Evaluation of interactive effects on the ionic conduction properties of polymer gel electrolytes. J Phys Chem B 116:10089–10097CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • T. M. Di Palma
    • 1
  • F. Migliardini
    • 1
  • M. F. Gaele
    • 1
  • P. Corbo
    • 1
    Email author
  1. 1.Istituto Motori, National Research Council of ItalyNaplesItaly

Personalised recommendations