Advertisement

Ionics

pp 1–11 | Cite as

Ultrathin carbon-coated Sb2Se3 nanorods embedded in 3D hierarchical carbon matrix as binder-free anode for high-performance sodium-ion batteries

  • Zhuo Chen
  • Jun Wu
  • Xiong Liu
  • Guobao XuEmail author
  • Liwen Yang
Original Paper
  • 20 Downloads

Abstract

A high-performance freestanding anode composed of carbon-coated Sb2Se3 nanorods and conductive carbon matrix of reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) for sodium-ion batteries (SIBs) is fabricated by a modified vacuum filtration, subsequent free-drying, and annealing. In this electrode architecture, the ultrathin amorphous carbon layers connect Sb2Se3 nanorods with the 3D interconnected carbon matrix. This unique cross-bonding network structure with good electrical conductivity and volume buffering effect improves the structural stability during repeating Na+ insertion/extraction and electrochemical performance. As a binder-free anode for SIBs, it reveals preferable initial charge-specific capacity of 792 mA h g−1 at a current density of 100 mA g−1, and simultaneously sustains 100 cycles at 500 mA g−1 with a specific capacity of 485 mA h g−1, and capacity retention ratio of 90%. The flexible Sb2Se3-based material as an anode can expectantly apply to the further development of advanced low-cost and flexible electronics for SIBs.

Keywords

Sodium-ion batteries Freestanding Sb2Se3 nanorods Carbon nanotubes Reduced graphene oxide 

Notes

Funding

This work was financially supported by the grants from the National Natural Science Foundation of China (No. 11474242).

Supplementary material

11581_2019_2961_MOESM1_ESM.doc (198 kb)
ESM 1 (DOC 198 kb)

References

  1. 1.
    Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRefGoogle Scholar
  2. 2.
    Goodenough JB (2012) Evolution of strategies for modern rechargeable batteries. Acc Chem Res 46:1053–1061CrossRefGoogle Scholar
  3. 3.
    Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954CrossRefGoogle Scholar
  4. 4.
    Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607CrossRefGoogle Scholar
  5. 5.
    Tarascon J-M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Sci 171–179.  https://doi.org/10.1142/9789814317665_0024
  6. 6.
    Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRefGoogle Scholar
  7. 7.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRefGoogle Scholar
  8. 8.
    Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884–5901CrossRefGoogle Scholar
  9. 9.
    Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033CrossRefGoogle Scholar
  10. 10.
    Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866CrossRefGoogle Scholar
  11. 11.
    Xu GL, Chen Z, Zhong GM, Liu Y, Yang Y, Ma T, Ren Y, Zuo X, Wu XH, Zhang X, Amine K (2016) Nanostructured black phosphorus/Ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett 16:3955–3965CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Xie J, Zhang S, Zhu P, Cao G, Zhao X (2015) Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries. Electrochim Acta 151:8–15CrossRefGoogle Scholar
  13. 13.
    Senguttuvan P, Rousse G, Seznec V, Tarascon J-M, Palacín MR (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111CrossRefGoogle Scholar
  14. 14.
    Xu GB, Yang LW, Wei XL, Ding JW, Zhong JX, Chu PK (2016) Hierarchical porous nanocomposite architectures from multi-wall carbon nanotube threaded mesoporous NaTi 2 (PO 4 ) 3 nanocrystals for high-performance sodium electrodes. J Power Sources 327:580–590CrossRefGoogle Scholar
  15. 15.
    Wu Y, Liu Z, Zhong X, Cheng X, Fan Z, Yu Y (2018) Amorphous red phosphorus embedded in sandwiched porous carbon enabling superior sodium storage performances. Small 14:1703472CrossRefGoogle Scholar
  16. 16.
    Luo W, Zhang P, Wang X, Li Q, Dong Y, Hua J, Zhou L, Mai L (2016) Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode. J Power Sources 304:340–345CrossRefGoogle Scholar
  17. 17.
    Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L (2012) Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 134:20805–20811CrossRefGoogle Scholar
  18. 18.
    Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48:7070–7072CrossRefGoogle Scholar
  19. 19.
    Baggetto L, Ganesh P, Sun C-N, Meisner RA, Zawodzinski TA, Veith GM (2013) Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J Mater Chem A 1:7985–7994CrossRefGoogle Scholar
  20. 20.
    Zhou X, Zhong Y, Yang M, Hu M, Wei J, Zhou Z (2014) Sb Nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem Commun 50:12888–12891CrossRefGoogle Scholar
  21. 21.
    Deng M, Li S, Hong W, Jiang Y, Xu W, Shuai H, Zou G, Hu Y, Hou H, Wang W, Ji X (2019) Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater Chem Phys 223:46–52CrossRefGoogle Scholar
  22. 22.
    Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) Carbon-coated Sb 2 Se 3 composite as anode material for sodium ion batteries. Electrochem Commun 60:74–77CrossRefGoogle Scholar
  23. 23.
    Zhao W, Li CM (2017) Mesh-structured N-doped graphene@Sb 2 Se 3 hybrids as an anode for large capacity sodium-ion batteries. J Colloid Interface Sci 488:356–364CrossRefGoogle Scholar
  24. 24.
    Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci U S A 104:13574–13577CrossRefGoogle Scholar
  25. 25.
    Yao B, Zhang J, Kou T, Song Y, Liu T, Li Y (2017) Paper-based electrodes for flexible energy storage devices. Adv Sci 4:1700107CrossRefGoogle Scholar
  26. 26.
    Wen L, Li F, Cheng HM (2016) Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 28:4306–4337CrossRefGoogle Scholar
  27. 27.
    Avilés F, Cauich-Rodríguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R (2009) Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 47:2970–2975CrossRefGoogle Scholar
  28. 28.
    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRefGoogle Scholar
  29. 29.
    Chen G, Wang W, Wang C, Ding T, Yang Q (2015) Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Adv Sci 2:1500109CrossRefGoogle Scholar
  30. 30.
    Wang J, Deng Z, Li Y (2002) Synthesis and characterization of Sb2Se3 nanorods. Mater Res Bull 37:495–502CrossRefGoogle Scholar
  31. 31.
    Zhang H-B, Lin G-D, Zhou Z-H, Dong X, Chen T (2002) Raman spectra of MWCNTs and MWCNT-based H2-adsorbing system. Carbon 40:2429–2436CrossRefGoogle Scholar
  32. 32.
    Kastner J, Pichler T, Kuzmany H, Curran S, Blau W, Weldon D, Delamesiere M, Draper S, Zandbergen H (1994) Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem Phys Lett 221:53–58CrossRefGoogle Scholar
  33. 33.
    Petkov K, Vassilev G, Todorov R, Tasseva J, Vassilev V (2011) Optical properties and structure of thin films from the system GeSe2–Sb2Se3–AgI. J Non-Cryst Solids 357:2669–2674CrossRefGoogle Scholar
  34. 34.
    Ma J, Wang Y, Wang Y, Peng P, Lian J, Duan X, Liu Z, Liu X, Chen Q, Kim T, Yao G, Zheng W (2011) One-dimensional Sb2Se3 nanostructures: solvothermal synthesis, growth mechanism, optical and electrochemical properties. CrystEngComm 13:2369–2374CrossRefGoogle Scholar
  35. 35.
    Thakur A, Kumar S, Rangra VS (2015) Synthesis of reduced graphene oxide (rGO) via chemical reduction. AIP Conf Proc 1661:080032CrossRefGoogle Scholar
  36. 36.
    Maruyama T, Katoh S, Nakajima M, Nabetani H, Abbott TP, Shono A, Satoh K (2001) FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes. J Membr Sci 192:201–207CrossRefGoogle Scholar
  37. 37.
    Ou X, Yang C, Xiong X, Zheng F, Pan Q, Jin C, Liu M, Huang K (2017) A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in situ X-ray diffraction study on a live sodiation/desodiation process. Adv Funct Mater 27:1606242CrossRefGoogle Scholar
  38. 38.
    Ma X, Luo W, Yan M, He L, Mai L (2016) In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy 24:165–188CrossRefGoogle Scholar
  39. 39.
    Xie D, Xia X, Zhong Y, Wang Y, Wang D, Wang X, Tu J (2017) Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage. Adv Energy Mater 7:1601804CrossRefGoogle Scholar
  40. 40.
    Peng HJ, Hou TZ, Zhang Q, Huang JQ, Cheng XB, Guo MQ, Yuan Z, He LY, Wei F (2014) Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation. Adv Mater Interfaces 1:1400227CrossRefGoogle Scholar
  41. 41.
    Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRefGoogle Scholar
  42. 42.
    Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XW (2016) Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217CrossRefGoogle Scholar
  43. 43.
    Ge P, Li S, Xu L, Zou K, Gao X, Cao X, Zou G, Hou H, Ji X (2019) Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv Energy Mater 9:1803035CrossRefGoogle Scholar
  44. 44.
    Liu X, Xu G, Xiao H, Wei X, Yang L (2017) Free-standing hierarchical porous assemblies of commercial TiO 2 nanocrystals and multi-walled carbon nanotubes as high-performance anode materials for sodium ion batteries. Electrochim Acta 236:33–42CrossRefGoogle Scholar
  45. 45.
    Yang H, Xu G, Wei X, Cao J, Yang L, Chu PK (2018) Ultrafast hetero-assembly of monolithic interwoven V2O5 nanobelts/carbon nanotubes architectures for high-energy alkali-ion batteries. J Power Sources 395:295–304CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhuo Chen
    • 1
  • Jun Wu
    • 1
  • Xiong Liu
    • 1
  • Guobao Xu
    • 2
    Email author
  • Liwen Yang
    • 1
  1. 1.School of Physics and OptoelectronicsXiangtan UniversityHunanChina
  2. 2.National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and EngineeringXiangtan UniversityHunanChina

Personalised recommendations