pp 1–17 | Cite as

Structural and electrochemical investigation of new integrated layered-layered-spinel composite, Li1.1Mn0.97Ni0.265Cr0.1Co0.065O3, as cathode material for high performance lithium ion battery

  • Mohadese Rastgoo-Deylami
  • Mehran JavanbakhtEmail author
  • Hamid Omidvar
Original Paper


A series of xLiMn1.4Ni0.4Cr0.2O4. (1 − x) Li1.2Mn0.54Ni0.13Co0.13O2, where x = 0, 0.25, 0.5, 0.75, and 1, were synthesized by solid-state method. The cathode composites included x values of 0.25, 0.5, and 0.75 showed both spinel and layered structures. When the amount of spinel component increased in the cathode composite, specific capacity decreased while rate performance and cyclic stability enhanced. Among the prepared composites, 0.5LiMn1.4Ni0.4Cr0.2O4. 0.5Li1.2Mn0.54Ni0.13Co0.13O2 (LL″S-0.5) delivered a good combination of high capacity, excellent rate performance, and high cycle stability, even after 300 cycles. It represented discharge capacities of 251 mAh g−1 at 0.1 C and 152 mAh g−1 even at 10 C. Furthermore, it showed high capacity retention of 94.4% after 300 cycles at 0.1 C. Additionally, ex situ X-ray diffraction results demonstrated that the both layered and spinel structures remained stable during the cycling of this cathode composite. This study represented a novel integrated layered-layered-spinel cathode composite including chromium ions with high cycling performance as well as excellent rate performance can be used in advanced lithium ion batteries.

Graphical abstract


Integrated layered-layered-spinel composite Cathode material Chromium-doped spinel Lithium ion battery 



The authors are grateful to Amirkabir University of Technology (Tehran, Iran) and Renewable Energy Research Center (RERC) for the technical support of this work.


  1. 1.
    Yan P, Zheng J, Zheng J, Wang Z, Teng G, Kuppan S, Xiao J, Chen G, Pan F, Zhang JG (2016) Ni and Co segregations on selective surface facets and rational design of layered lithium transition-metal oxide cathodes. Adv Energy Mater 6(9):1502455CrossRefGoogle Scholar
  2. 2.
    Yabuuchi N, Yoshii K, Myung S-T, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133(12):4404–4419CrossRefGoogle Scholar
  3. 3.
    Kim S, Noh J-K, Aykol M, Lu Z, Kim H, Choi W, Kim C, Chung KY, Wolverton C, Cho B-W (2015) Layered-layered-spinel cathode materials prepared by a high-energy ball-milling process for lithium-ion batteries. ACS Appl Mater Interfaces 8(1):363–370CrossRefGoogle Scholar
  4. 4.
    Wu F, Li N, Su Y, Shou H, Bao L, Yang W, Zhang L, An R, Chen S (2013) Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater 25(27):3722–3726CrossRefGoogle Scholar
  5. 5.
    Wang D, Yu R, Wang X, Ge L, Yang X (2015) Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries. Sci Rep 5:8403CrossRefGoogle Scholar
  6. 6.
    Feng X, Yang Z, Tang D, Kong Q, Gu L, Wang Z, Chen L (2015) Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4. Phys Chem Chem Phys 17(2):1257–1264CrossRefGoogle Scholar
  7. 7.
    Cabana J, Kang S-H, Johnson CS, Thackeray MM, Grey CP (2009) Structural and electrochemical characterization of composite layered-spinel electrodes containing Ni and Mn for Li-ion batteries. J Electrochem Soc 156(9):A730–A736CrossRefGoogle Scholar
  8. 8.
    Lee E-S, Huq A, Chang H-Y, Manthiram A (2012) High-voltage, high-energy layered-spinel composite cathodes with superior cycle life for lithium-ion batteries. Chem Mater 24(3):600–612CrossRefGoogle Scholar
  9. 9.
    Luo D, Li G, Fu C, Zheng J, Fan J, Li Q, Li L (2014) A new spinel-layered Li-rich microsphere as a high-rate cathode material for Li-ion batteries. Adv Energy Mater 4(11):1400062CrossRefGoogle Scholar
  10. 10.
    Zhao J, Wang H, Xie Z, Ellis S, Kuai X, Guo J, Zhu X, Wang Y, Gao L (2016) Tailorable electrochemical performance of spinel cathode materials via in-situ integrating a layered Li2MnO3 phase for lithium-ion batteries. J Power Sources 333:43–52CrossRefGoogle Scholar
  11. 11.
    Lu J, Chang Y-L, Song B, Xia H, Yang J-R, Lee KS, Lu L (2014) High energy spinel-structured cathode stabilized by layered materials for advanced lithium-ion batteries. J Power Sources 271:604–613CrossRefGoogle Scholar
  12. 12.
    Basu S, Dahiya P, Akhtar M, Ray S, Chang J, Majumder S (2016) High energy density layered-spinel hybrid cathodes for lithium ion rechargeable batteries. Mater Sci Eng B 213:148–156CrossRefGoogle Scholar
  13. 13.
    Johnson C, Li N, Vaughey J, Hackney S, Thackeray M (2005) Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3·(1−x)Li1+yMn2−yO4 (0<x<1, 0⩽y⩽0.33) for lithium batteries. Electrochem Commun 7(5):528–536CrossRefGoogle Scholar
  14. 14.
    Zhao J, Ellis S, Xie Z, Wang Y (2015) Synthesis of integrated layered-spinel composite cathode materials for high-voltage lithium-ion batteries up to 5.0 V. ChemElectroChem 2(11):1821–1829CrossRefGoogle Scholar
  15. 15.
    Kim D, Sandi G, Croy JR, Gallagher KG, Kang S-H, Lee E, Slater MD, Johnson CS, Thackeray MM (2013) Composite ‘layered-layered-spinel’ cathode structures for lithium-ion batteries. J Electrochem Soc 160(1):A31–A38CrossRefGoogle Scholar
  16. 16.
    Park K, Yeon D, Kim JH, Park J-H, Doo S, Choi B (2017) Spinel-embedded lithium-rich oxide composites for Li-ion batteries. J Power Sources 360:453–459CrossRefGoogle Scholar
  17. 17.
    Park S-H, Kang S-H, Johnson C, Amine K, Thackeray M (2007) Lithium–manganese–nickel-oxide electrodes with integrated layered–spinel structures for lithium batteries. Electrochem Commun 9(2):262–268CrossRefGoogle Scholar
  18. 18.
    Li D, Zhang H, Wang C, Song D, Shi X, Zhang L (2017) New structurally integrated layered-spinel lithium-cobalt-manganese-oxide composite cathode materials for lithium-ion batteries. J Alloys Compd 696:276–289CrossRefGoogle Scholar
  19. 19.
    Tian M, Zhou L, Wu H, Jiang N, Zheng Q, Xu C, Lam KH, Lin D (2016) Phase structure and electrochemical performance of layered-spinel integrated LiNi0.5Mn0.5O2-LiMn1.9Al0.1O4 composite cathodes for lithium ion batteries. Ceram Int 42(15):16916–16926CrossRefGoogle Scholar
  20. 20.
    Xiao J, Chen X, Sushko PV, Sushko ML, Kovarik L, Feng J, Deng Z, Zheng J, Graff GL, Nie Z (2012) High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater 24(16):2109–2116CrossRefGoogle Scholar
  21. 21.
    Younesi R, Malmgren S, Edström K, Tan S (2014) Influence of annealing temperature on the electrochemical and surface properties of the 5-V spinel cathode material LiCr0.2Ni0.4Mn1.4O4 synthesized by a sol–gel technique. J Solid State Electrochem 18(8):2157–2166CrossRefGoogle Scholar
  22. 22.
    Mao J, Dai K, Xuan M, Shao G, Qiao R, Yang W, Battaglia VS, Liu G (2016) Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. ACS Appl Mater Interfaces 8(14):9116–9124CrossRefGoogle Scholar
  23. 23.
    Lu J, Lee KS (2016) Spinel cathodes for advanced lithium ion batteries: a review of challenges and recent progress. Mater Technol 31(11):628–641CrossRefGoogle Scholar
  24. 24.
    Singh G, Thomas R, Kumar A, Katiyar R (2012) Electrochemical behavior of Cr-doped composite Li2MnO3-LiMn0.5Ni0.5O2 cathode materials. J Electrochem Soc 159(4):A410–A420CrossRefGoogle Scholar
  25. 25.
    Liu Y, Fan X, Zhang Z, Wu H-H, Liu D, Dou A, Su M, Zhang Q, Chu D (2018) Enhanced electrochemical performance of Li-rich layered cathode materials by combined Cr doping and LiAlO2 coating. ACS Sustain Chem Eng 7(2):2225–2235CrossRefGoogle Scholar
  26. 26.
    Hao W, Zhan H, Chen H, Wang Y, Tan Q, Su F (2014) Solid-state synthesis of Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials for lithium-ion batteries. Particuology 15:18–26CrossRefGoogle Scholar
  27. 27.
    Li X, Li D, Song D, Shi X, Tang X, Zhang H, Zhang L (2018) Unravelling the structure and electrochemical performance of Li–Cr–Mn–O cathodes: from spinel to layered. ACS Appl Mater Interfaces 10(10):8827–8835CrossRefGoogle Scholar
  28. 28.
    Zeng J, Cui Y, Qu D, Zhang Q, Wu J, Zhu X, Li Z, Zhang X (2016) Facile synthesis of platelike hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 with exposed {010} planes for high-rate and long cycling-stable lithium ion batteries. ACS Appl Mater Interfaces 8(39):26082–26090CrossRefGoogle Scholar
  29. 29.
    Zhong G, Wang Y, Yu Y, Chen C (2012) Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe, Co, Cr) 5 V cathode materials for lithium ion batteries. J Power Sources 205:385–393CrossRefGoogle Scholar
  30. 30.
    Lee E-S, Manthiram A (2013) Influence of doping on the cation ordering and charge–discharge behavior of LiMn1.5Ni0.5−xMxO4 (M= Cr, Fe, Co, and Ga) spinels between 5.0 and 2.0 V. J Mater Chem A 1(9):3118–3126CrossRefGoogle Scholar
  31. 31.
    Liu Y, Zhang Z, Gao Y, Yang G, Li C, Zheng J, Dou A, Wang Q, Su M (2016) Mitigating the voltage decay and improving electrochemical properties of layered-spinel Li1.1Ni0.25Mn0.75O2.3 cathode material by Cr doping. J Alloys Compd 657:37–43CrossRefGoogle Scholar
  32. 32.
    Yang J, Xiao L, He W, Fan J, Chen Z, Ai X, Yang H, Cao Y (2016) Understanding voltage decay in lithium-rich manganese-based layered cathode materials by limiting cutoff voltage. ACS Appl Mater Interfaces 8(29):18867–18877CrossRefGoogle Scholar
  33. 33.
    Liu Y, Gao Y, Dou A (2014) Influence of Li content on the structure and electrochemical performance of Li1+xNi0.25Mn0.75O2.25+x/2 cathode for Li-ion battery. J Power Sources 248:679–684CrossRefGoogle Scholar
  34. 34.
    Cabana J, Johnson CS, Yang X-Q, Chung K-Y, Yoon W-S, Kang S-H, Thackeray MM, Grey CP (2010) Structural complexity of layered-spinel composite electrodes for Li-ion batteries. J Mater Res 25(8):1601–1616CrossRefGoogle Scholar
  35. 35.
    Nam K-W, Yoon W-S, Shin H, Chung KY, Choi S, Yang X-Q (2009) In situ X-ray diffraction studies of mixed LiMn2O4–LiNi1/3Co1/3Mn1/3O2 composite cathode in Li-ion cells during charge–discharge cycling. J Power Sources 192(2):652–659CrossRefGoogle Scholar
  36. 36.
    Cheng T, Ma Z, Gu R, Chen R, Lyu Y, Nie A, Guo B (2018) Cracks formation in lithium-rich cathode materials for lithium-ion batteries during the electrochemical process. Energies 11(10):2712CrossRefGoogle Scholar
  37. 37.
    Mohanty D, Sefat AS, Li J, Meisner RA, Rondinone AJ, Payzant EA, Abraham DP, Wood DL III, Daniel C (2013) Correlating cation ordering and voltage fade in a lithium–manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study. Phys Chem Chem Phys 15(44):19496–19509CrossRefGoogle Scholar
  38. 38.
    Zheng J, Gu M, Xiao J, Zuo P, Wang C, Zhang J-G (2013) Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett 13(8):3824–3830CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mohadese Rastgoo-Deylami
    • 1
    • 2
  • Mehran Javanbakht
    • 1
    • 2
    Email author
  • Hamid Omidvar
    • 2
    • 3
  1. 1.Department of ChemistryAmirkabir University of TechnologyTehranIran
  2. 2.Renewable Energy Research CenterAmirkabir University of TechnologyTehranIran
  3. 3.Department of Mining and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations