Advertisement

Ionics

pp 1–15 | Cite as

Synthesis and characterization of microporous hybrid nanocomposite membrane as potential hydrogen storage medium towards fuel cell applications

  • R. Naresh Muthu
  • S. RajashabalaEmail author
  • R. Kannan
Original Paper
  • 42 Downloads

Abstract

Hydrogen is believed to be the clean energy source for the future, since water is the only by-product of hydrogen fuel cell. However, the great obstacle for the blooming of hydrogen economy is the development of safe, efficient, and economical onboard hydrogen storage medium. This paper describes the hydrogen storage performance of microporous polyetherimide/acid-treated halloysite nanotube/activated hexagonal boron nitride (PEI/A-HNT/Ah-BN) hybrid nanocomposite membranes. The microporous PEI/A-HNT/Ah-BN hybrid nanocomposite membranes were synthesized by a facile phase inversion technique. The synthesized hybrid nanocomposite membranes were characterized extensively by techniques like X-ray diffraction (XRD), micro-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and CHNS elemental analysis. The microporous throughout the membrane matrix and the superior dispersion of A-HNT, Ah-BN nanomaterials on the surface of PEI were confirmed by SEM. The hydrogen storage properties were investigated by Sieverts-like hydrogenation setup. The outcomes indicated that the PEI/A-HNT/Ah-BN hybrid nanocomposite membrane exhibits best hydrogen storage capacity as 4.2 wt% compared with PEI/A-HNT (3.6 wt%), PEI/Ah-BN (2.4 wt%), and pristine PEI (0.8 wt%) membranes. Furthermore, the binding energy of stored hydrogen for PEI/A-HNT/Ah-BN hybrid nanocomposite is found to be 0.32 eV. In addition, the reusability of PEI/A-HNT/Ah-BN hybrid nanocomposite was studied and also exhibited good long-term stability (91.43%) even after 5th cycles. These results indicate that the proposed microporous PEI/A-HNT/Ah-BN hybrid nanocomposite membrane strategy provides a direction for new materials that meet the U.S. Department of Energy (DOE) hydrogen storage targets 2020 for fuel call applications.

Keywords

Activated hexagonal BN nanoparticles (Ah-BN) Acid-treated halloysite nanotubes (A-HNTs) Microporous PEI/A-HNT/Ah-BN hybrid nanocomposite Phase inversion technique Hydrogen storage 

Notes

Acknowledgements

One of the authors, Dr. S. Rajashabala, acknowledges the University Grants Commission of India for providing grant to carry out this work under UGC-MRP (F.No. 41-893/2012 (SR)). The facilities provided by UGC-UPE for micro-Raman and USIC-MKU for FTIR studies are acknowledged.

Funding

This study was funded by UGC-MRP [F.No. 41-893/2012 (SR)].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yilmaz F, Balta MT, Selbaş R (2016) A review of solar based hydrogen production methods. Renew Sust Energ Rev 56:171–178CrossRefGoogle Scholar
  2. 2.
    Wei TY, Lim KL, Tseng YS, Chan SLI (2017) A review on the characterization of hydrogen in hydrogen storage materials. Renew Sust Energ Rev 79:1122–1133CrossRefGoogle Scholar
  3. 3.
    Rusman NAA, Dahari M (2016) A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int J Hydrog Energy 41:12108–12126CrossRefGoogle Scholar
  4. 4.
    Sherif S, Barbir F, Veziroglu T (2005) Towards a hydrogen economy. Electr J 18:62–76Google Scholar
  5. 5.
    Cipriani G, Dio VD, Genduso F, Cascia DL, Liga R, Miceli R, Galluzzo GR (2014) Perspective on hydrogen energy carrier and its automotive applications. Int J Hydrog Energy 39:8482–8494CrossRefGoogle Scholar
  6. 6.
    Xie G, Zhang K, Guo BD, Liu Q, Fang L, Gong JR (2013) Graphene-based materials for hydrogen generation from light-driven water splitting. Adv Mater 25:3820–3839CrossRefGoogle Scholar
  7. 7.
    Dutta S (2014) A review on production, storage of hydrogen and its utilization as an energy resource. Ind Eng Chem Res 20:1148–1156CrossRefGoogle Scholar
  8. 8.
    Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrog Energy 33:4013–4029CrossRefGoogle Scholar
  9. 9.
    Hwang HT, Varma A (2014) Hydrogen storage for fuel cell vehicles. Curr Opin Chem Eng 5:42–48CrossRefGoogle Scholar
  10. 10.
    Durbin DJ, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrog Energy 38:14595–14617CrossRefGoogle Scholar
  11. 11.
    Niaz S, Manzoor T, Pandith AH (2015) Hydrogen storage: materials, methods and perspectives. Renew Sust Energ Rev 50:457–469CrossRefGoogle Scholar
  12. 12.
    McKeown NB, Gahnem B, Msayib KJ, Budd PM, Tattershall CE, Mahmood K, Tan S, Book D, Langmi HW, Walton A (2006) Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew Chem Int Ed 45:1804–1807CrossRefGoogle Scholar
  13. 13.
    Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stockel E, Cooper AI (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19:2034–2048CrossRefGoogle Scholar
  14. 14.
    Ramimoghadam D, Gray EM, Webb CJ (2016) Review of polymers of intrinsic microporosity for hydrogen storage applications. Int J Hydrog Energy 41:16944–16965CrossRefGoogle Scholar
  15. 15.
    Budd PM, Butler A, Selbie J, Mahmood K, McKeown NB, Ghanem B, Msayib K, Book D, Waltonc A (2007) The potential of organic polymer-based hydrogen storage materials. Phys Chem Chem Phys 9:1802–1808CrossRefGoogle Scholar
  16. 16.
    McKeown NB, Budd PM, Book D (2007) Microporous polymers as potential hydrogen storage materials. Rapid Commun 28:995–1002CrossRefGoogle Scholar
  17. 17.
    Jurczyka MU, Kumar A, Srinivasan S, Stefanakos E (2007) Polyaniline-based nanocomposite materials for hydrogen storage. Int J Hydrog Energy 32:1010–1015CrossRefGoogle Scholar
  18. 18.
    Zhang C, Zhu P-C, Tan L, Luo L-N, Liu Y, Liu J-M, Ding S-Y, Tan B, Yang X-L, Xu H-B (2016) Synthesis and properties of organic microporous polymers from the monomer of hexaphenylbenzene based triptycene. Polymer 82:100–104CrossRefGoogle Scholar
  19. 19.
    Weber J, Antonietti M, Thomas A (2008) Microporous networks of high-performance polymers: elastic deformations and gas sorption properties. Macromolecules 41:2880–2885CrossRefGoogle Scholar
  20. 20.
    Pedicini R, Sacca A, Carbone A, Passalacqua E (2011) Hydrogen storage based on polymeric material. Int J Hydrog Energy 36:9062–9068CrossRefGoogle Scholar
  21. 21.
    Lee J-Y, Wood CD, Bradshaw D, Rosseinsky MJ, Cooper AI (2006) Hydrogen adsorption in microporous hypercrosslinked polymers. Chem Commun 25:2670–2672Google Scholar
  22. 22.
    Germain J, Hradil J, Frechet JMJ, Svec F (2006) High surface area nanoporous polymers for reversible hydrogen storage. Chem Mater 18:4430–4435CrossRefGoogle Scholar
  23. 23.
    Silambarasan D, Vasu V, Iyakutti K (2014) Water soluble polymer-SWCNT-based composite for hydrogen storage. IEEE Trans Nanotechnol 13:261–267CrossRefGoogle Scholar
  24. 24.
    Kim BH, Hong WG, Lee SM, Yun YJ, Yu HY, Oh S-Y, Kim CH, Kim YY, Kim HJ (2010) Enhancement of hydrogen storage capacity in polyaniline-vanadium pentoxide nanocomposites. Int J Hydrog Energy 35:1300–1304CrossRefGoogle Scholar
  25. 25.
    Muthu RN, Rajashabala S, Kannan R (2015) Synthesis and characterization of polymer (sulfonated poly-ether-ether -ketone) based nanocomposite (h-boron nitride) membrane for hydrogen storage. Int J Hydrog Energy 40:1836–1845CrossRefGoogle Scholar
  26. 26.
    Chen Y, Zhu H, Liu Y (2011) Preparation of activated rectangular polyaniline-based carbon tubes and their application in hydrogen adsorption. Int J Hydrog Energy 36:11738–11745CrossRefGoogle Scholar
  27. 27.
    Li A, Lu R-F, Wang Y, Wang X, Han K-L, Deng W-Q (2010) Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew Chem Int Ed 49:3330–3333CrossRefGoogle Scholar
  28. 28.
    Makridis SS, Gkanas EI, Panagakos G, Kikkinides ES, Stubos AK, Wagener P, Barcikowski S (2013) Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage. Int J Hydrog Energy 38:11530–11535CrossRefGoogle Scholar
  29. 29.
    Cho SJ, Choo K, Kim DP, Kim JW (2007) H2 sorption in HCl-treated polyaniline and polypyrrole. Catal Today 120:336–340CrossRefGoogle Scholar
  30. 30.
    Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28:1227–1250CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Tang A, Yang H, Ouyang J (2016) Applications and interfaces of halloysite nanocomposites. Appl Clay Sci 119:8–17CrossRefGoogle Scholar
  32. 32.
    Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112–113:75–93CrossRefGoogle Scholar
  33. 33.
    Massaro M, Amorati R, Cavallaro G, Guernelli S, Lazzara G, Milioto S, Noto R, Poma P, Riela S (2016) Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B 140:505–513CrossRefGoogle Scholar
  34. 34.
    Jin J, Ouyang J, Yang H (2017) Pd nanoparticles and MOFs synergistically hybridized Halloysite nanotubes for hydrogen storage. Nanoscale Res Lett 12:240CrossRefGoogle Scholar
  35. 35.
    Attia NF, Menemparabath MM, Arepalli S, Geckeler KE (2013) Inorganic nanotube composites based on polyaniline: potential room-temperature hydrogen storage materials. Int J Hydrog Energy 38:9251–9262CrossRefGoogle Scholar
  36. 36.
    Jin J, Zhang Y, Ouyang J, Yang H (2014) Halloysite nanotubes as hydrogen storage materials. Phys Chem Miner 41:323–331CrossRefGoogle Scholar
  37. 37.
    Muthu RN, Rajashabala S, Kannan R (2016) Facile synthesis and characterization of a reduced graphene oxide/halloysite nanotubes/hexagonal boron nitride (RGO/HNT/h-BN) hybrid nanocomposite and its potential application in hydrogen storage. RSC Adv 6:79072–79084CrossRefGoogle Scholar
  38. 38.
    Muthu RN, Rajashabala S, Kannan R (2016) Synthesis, characterization of hexagonal boron nitride nanoparticles decorated halloysite nanoclay composite and its application as hydrogen storage medium. Renew Energy 90:554–564CrossRefGoogle Scholar
  39. 39.
    Muthu RN, Rajashabala S, Kannan R (2018) Synthesis of polyetherimide/halloysite nanotubes (PEI/HNTs) based nanocomposite membrane towards hydrogen storage. AIP Conf Proc 1942:050107CrossRefGoogle Scholar
  40. 40.
    Weng Q, Wang X, Wang X, Bandoa Y, Golberg D (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45:3989–4012CrossRefGoogle Scholar
  41. 41.
    Wang J, Ma F, Sun M (2017) Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv 7:16801–16822CrossRefGoogle Scholar
  42. 42.
    Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993CrossRefGoogle Scholar
  43. 43.
    Duan X, Yang Z, Chen L, Tian Z, Cai D, Wang Y, Jia D, Zhou Y (2016) Review on the properties of hexagonal boron nitride matrix composite ceramics. J Eur Ceram Soc 36:3725–3737CrossRefGoogle Scholar
  44. 44.
    Weng Q, Wang X, Zhi C, Bando Y, Golberg D (2013) Boron nitride porous microbelts for hydrogen storage. ACS Nano 7:1558–1565CrossRefGoogle Scholar
  45. 45.
    Weng Q, Wang X, Bando Y, Golberg D (2014) One-step template-free synthesis of highly porous boron nitride microsponges for hydrogen storage. Adv Energy Mater 4:1301525CrossRefGoogle Scholar
  46. 46.
    Muthu RN, Rajashabala S, Kannan R (2017) Hydrogen storage performance of lithium borohydride decorated activated hexagonal boron nitride nanocomposite for fuel cell applications. Int J Hydrog Energy 42:15586–15596CrossRefGoogle Scholar
  47. 47.
    Ma R, Bando Y, Zhu H, Sato T, Xu C, Wu D (2002) Hydrogen uptake in boron nitride nanotubes at room temperature. J Am Chem Soc 124:7672–7673CrossRefGoogle Scholar
  48. 48.
    Reddy ALM, Tanur AE, Walker GC (2010) Synthesis and hydrogen storage properties of different types of boron nitride nanostructures. Int J Hydrog Energy 35:4138–4143CrossRefGoogle Scholar
  49. 49.
    Tang C, Bando Y, Ding X, Qi S, Golberg D (2002) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124:14550–14551CrossRefGoogle Scholar
  50. 50.
    Li J, Lin J, Xu X, Zhang X, Xue Y, Mi J, Mo Z, Fan Y, Hu L, Yang X, Zhang J, Meng F, Yuan S, Tang C (2013) Porous boron nitride with a high surface area: hydrogen storage and water treatment. Nanotechnology 24:155603 (7pp)CrossRefGoogle Scholar
  51. 51.
    Lei W, Zhang H, Wu Y, Zhang B, Liu D, Qin S, Liu Z, Liu L, Ma Y, Chen Y (2014) Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy 6:219–224CrossRefGoogle Scholar
  52. 52.
    Dundar-Tekkaya E, Yurum Y (2016) Mesoporous MCM-41 material for hydrogen storage: a short review. Int J Hydrog Energy 41:9789–9795CrossRefGoogle Scholar
  53. 53.
    Ghasemi M, Daud WRW, Alam J, Ilbeygi H, Sedighi M, Ismail AF, Yazdi MH, Aljlil SA (2016) Treatment of two different water resources in desalination and microbial fuel cell processes by poly sulfone/sulfonated poly ether ether ketone hybrid membrane. Energy 96:303–313CrossRefGoogle Scholar
  54. 54.
    Strathmann H (1991) Fundamentals of membrane separation processes. In: Costa CA, Cabral JS (eds) Chromatographic and membrane processes in biotechnology, NATO ASI Series (Series E: Applied Sciences), vol 204. Springer, DordrechtGoogle Scholar
  55. 55.
    Xi J, Qiu X, Li J, Tang X, Zhu W, Chen L (2006) PVDF–PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J Power Sources 157:501–506CrossRefGoogle Scholar
  56. 56.
    Lim SS, Daud WRW, Jahim JM, Ghasemi M, Chong PS, Ismail M (2012) Sulfonated poly(ether ether ketone)/poly(ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells. Int J Hydrog Energy 37:11409–11424CrossRefGoogle Scholar
  57. 57.
    Leong JX, Daud WRW, Ghasemi M, Ahmad A, Ismail M, Liew KB (2015) Composite membrane containing graphene oxide in sulfonated polyether ether ketone in microbial fuel cell applications. Int J Hydrog Energy 40:11604–11614CrossRefGoogle Scholar
  58. 58.
    Sumisha A, Arthanareeswaran G, Ismail AF, Kumar DP, Shankar MV (2015) Functionalized titanate nanotube–polyetherimide nanocomposite membrane for improved salt rejection under low pressure nanofiltration. RSC Adv 5:39464–39473CrossRefGoogle Scholar
  59. 59.
    Choudhury A (2010) Dielectric and piezoelectric properties of polyetherimide/BaTiO3 nanocomposites. Mater Chem Phys 121:280–285CrossRefGoogle Scholar
  60. 60.
    Amancio-Filho ST, Roeder J, Nunes SP, Santos JF, Beckmann F (2008) Thermal degradation of polyetherimide joined by friction riveting (FricRiveting). Part I: influence of rotation speed. Polym Degrad Stab 93:1529–1538CrossRefGoogle Scholar
  61. 61.
    Chen B-K, Su C-T, Tseng M-C, Tsay S-Y (2006) Preparation of polyetherimide nanocomposites with improved thermal, mechanical and dielectric properties. Polym Bull 57:671–681CrossRefGoogle Scholar
  62. 62.
    Kumari S, Sharma OP, Gusain R, Mungse HP, Kukrety A, Kumar N, Sugimura H, Khatri OP (2015) Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil dispersible additives for friction and wear reduction. ACS Appl Mater Interfaces 7:3708–3716CrossRefGoogle Scholar
  63. 63.
    Kim KS, Kingston CT, Hrdina A, Jakubinek MB, Guan J, Plunkett M, Simard B (2014) Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies. ACS Nano 8:6211–6220CrossRefGoogle Scholar
  64. 64.
    Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859CrossRefGoogle Scholar
  65. 65.
    Abdullayev EL, Joshi A, Wei W, Zhao Y, Lvov Y (2012) Enlargement of halloysite nanotube lumen by selective etching of aluminum oxide. ACS Nano 6:7216–7226CrossRefGoogle Scholar
  66. 66.
    Zhang Y, Xie Y, Tang A, Zhou Y, Ouyang J, Yang H (2014) Precious-metal nanoparticles anchored onto functionalized halloysite nanotubes. Ind Eng Chem Res 53:5507–5514CrossRefGoogle Scholar
  67. 67.
    Henriquez CMG, Tagle LH, Terraza CA, Gonzalez AB, Volkmann UG, Cabrera AL, Ramos-Moore E, Pavez-Moreno M (2012) Structural symmetry breaking of silicon-containing poly(amide-imide) oligomers and its relation to electrical conductivity and Raman-active vibrations. Polym Int 61:197–204CrossRefGoogle Scholar
  68. 68.
    Filho PFF, Freire PTC, Lima KCV, Filho JM, Melo FEA (2008) High temperature Raman spectra of L-leucine crystals. Braz J Phys 38:131–137CrossRefGoogle Scholar
  69. 69.
    Vuiblet V, Nguyen TT, Wynckel A, Fere M, Van-Gulick L, Untereiner V, Birembaut P, Rieu P, Piot O (2015) Contribution of Raman spectroscopy in nephrology: a candidate technique to detect hydroxyethyl starch of third generation in osmotic renal lesions. Analyst 140:7382–7390CrossRefGoogle Scholar
  70. 70.
    Gehk R, Perry CH (1966) Normal modes in hexagonal boron nitride. Phys Rev 146:543–547CrossRefGoogle Scholar
  71. 71.
    Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215CrossRefGoogle Scholar
  72. 72.
    Zhi C, Bando Y, Tang C, Golberg D (2005) Phonon characteristics and cathodoluminescence of boron nitride nanotubes. Appl Phys Lett 86:213110CrossRefGoogle Scholar
  73. 73.
    Pitchan MK, Bhowmik S, Balachandran M, Abraham M (2016) Effect of surface functionalization on mechanical properties and decomposition kinetics of high performance polyetherimide/MWCNT nano composites. Compos Part A 90:147–160CrossRefGoogle Scholar
  74. 74.
    Barbosa-Coutinho E, Salim VMM, Borges CP (2003) Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon 41:1707–1714CrossRefGoogle Scholar
  75. 75.
    Zhang C, Liu Y, Li B, Tan B, Chen C-F, Xu H-B, Yang X-L (2012) Triptycene-based microporous polymers: synthesis and their gas storage properties. ACS Macro Lett 1:190–193CrossRefGoogle Scholar
  76. 76.
    Ghanem BS, Msayib KJ, McKeown NB, Harris KDM, Pan Z, Budd PM, Butler A, Selbie J, Bookc D, Walton A (2007) A triptycene-based polymer of intrinsic microporosity that displays enhanced surface area and hydrogen adsorption. Chem Commun 1:67–69Google Scholar
  77. 77.
    Ghanem BS, Hashem M, Harris KDM, Msayib KJ, Xu M, Budd PM, Chaukura N, Book D, Tedds S, Walton A, McKeown NB (2010) Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption. Macromol 43:5287–5294CrossRefGoogle Scholar
  78. 78.
    Makhseed S, Samuel J (2008) Hydrogen adsorption in microporous organic framework polymer. Chem Commun 36:4342–4344Google Scholar
  79. 79.
    Muthu RN, Rajashabala S, Kannan R (2016) Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage. Renew Energy 85:387–394CrossRefGoogle Scholar
  80. 80.
    Lochan RC, Head-Gordon M (2006) Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys Chem Chem Phys 8:1357–1370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsMadurai Kamaraj UniversityMaduraiIndia
  2. 2.Department of Energy Science and EngineeringIndian Institute of Technology BombayMumbaiIndia
  3. 3.Department of Physics, University College of EngineeringAnna UniversityDindigulIndia

Personalised recommendations