Advertisement

Ionics

pp 1–10 | Cite as

Na2 + 2xFe2-x (SO4)3@rice husks carbon composite as a high-performance cathode material for sodium-ion batteries

  • Huifang Di
  • Huijuan YueEmail author
  • Hui Qi
  • Dong ZhangEmail author
  • Gang Chen
Original Paper
  • 56 Downloads

Abstract

Na2 + 2xFe2-x (SO4)3 (NFS) holds great promise as the cathode material for room-temperature sodium-ion batteries. However, large-scale application of NFS is highly impeded by its low electrical conductivity, which leads to poor cyclability and rate capability. To address these issues, we introduce rice husk-derived carbon with engineered porosity and structure as carrier to load active material NFS. The resultant hybrid material delivers extremely high specific charge capacity of 113.4 mAh g−1 at 0.1 C (1 C = 120 mA g−1), and a large reversible capacity of 81.2 mAh g−1 is retained after 100 cycles with a high retention rate of about 83.9%. The capacity of the composite can reach 60 mAh g−1 even at the current density 5 C. These excellent electrochemical performances are attributed to a favorable combination of the interpenetrating conductive carbon framework and ordered mesoporous structure that maintain well-balanced ionic and electronic conductivities throughout the electrode.

Keywords

Sodium-ion batteries Na2 + 2xFe2-x (SO4)3 Rice husk carbon Cathode 

Notes

Funding information

This work was supported by funding from “973” project (No. 2015CB251103), National Natural Science Foundation of China (No. 21771086), S&T Development Program of Jilin Province (Nos. 20160101320JC, 20180101293JC), and Jilin Provincial Department of Education “13th Five-Year” scientific research project (No. JJKH20180116KJ).

Supplementary material

11581_2019_2951_MOESM1_ESM.doc (2.2 mb)
ESM 1 (DOC 2216 kb)

References

  1. 1.
    Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRefGoogle Scholar
  2. 2.
    Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed Engl 46:3431–3448CrossRefGoogle Scholar
  3. 3.
    Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRefGoogle Scholar
  4. 4.
    Gao L, Chen S, Zhang LL, Yang XL (2019) Tailoring NaxMnO2 nanosheet arrays with hierarchical construction for efficient sodium ion storage. J Alloys Compd 782:81–88CrossRefGoogle Scholar
  5. 5.
    Gao L, Chen S, Zhang LL, Yang XL (2018) High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. J Alloys Compd 766:284–290CrossRefGoogle Scholar
  6. 6.
    Gao L, Wang LC, Dai SR, Cao ML, Zhong ZC, Shen Y, Wang MK (2017) Li4Ti5O12-TiO2 nanowire arrays constructed with stacked nanocrystals for high-rate lithium and sodium ion batteries. J Power Sources 344:223–232CrossRefGoogle Scholar
  7. 7.
    Gao L, Chen S, Zhang LL, Yang XL (2018) Self-supported Na0.7CoO2 nanosheet arrays as cathodes for high performance sodium ion batteries. J Power Sources 396:379–385CrossRefGoogle Scholar
  8. 8.
    Wang L, Lu YH, Liu J, Xu MW, Cheng JG, Zhang DW, Goodenough JB (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem 125:2018–2021CrossRefGoogle Scholar
  9. 9.
    Yue YF, Binder AJ, Guo BK, Zhang ZY, Qiao ZA, Tian CC, Dai S (2014) Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew Chem Int Ed 53:3134–3137CrossRefGoogle Scholar
  10. 10.
    Zhang LL, Zhou YX, Li T, Ma D, Yang XL (2018) Multi-heteroatom doped carbon coated Na3V2(PO4)3 derived from ionic liquid. Dalton Trans 47:4259–4266CrossRefGoogle Scholar
  11. 11.
    Nisar U, Shakoor RA, Essehli R, Amin R, Orayech B, Ahmad Z, Kumar PR, Kahraman R, Qaradawi SA, Soliman A (2018) Sodium intercalation/de-intercalation mechanism in Na4MnV(PO4)3 cathode materials. Electrochim Acta 292:98–106CrossRefGoogle Scholar
  12. 12.
    Gao HC, Li YT, Park K, Goodenough JB (2016) Sodium extraction from NASICON-structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) redox couples. Chem Mater 28:6553–6559CrossRefGoogle Scholar
  13. 13.
    Gao HC, Seymour ID, Xin S, Xue LG, Henkelman G, Goodenough JB (2018) Na3MnZr(PO4)3: a high-voltage cathode for sodium batteries. J Am Chem Soc 140:18192–18199CrossRefGoogle Scholar
  14. 14.
    Zhang LL, Ma D, Li T, Liu J, Ding XK, Huang YH, Yang XL (2018) Polydopamine-derived nitrogen-doped carbon covered Na3V2(PO4)2F3 cathode material for high-performance Na-ion batteries. ACS Appl Mater Interfaces 10:36851–36859CrossRefGoogle Scholar
  15. 15.
    Ma D, Zhang LL, Li T, Liu C, Liang G, Zhou YX (2018) Enhanced electrochemical performance of carbon and aluminum oxide co-coated Na3V2(PO4)2F3 cathode material for sodium ion batteries. Electrochim Acta 283:1441–1449CrossRefGoogle Scholar
  16. 16.
    Lin B, Zhang S, Deng C (2016) Understanding the effect of depressing surface moisture sensitivity on promoting sodium intercalation in coral-like Na3.12Fe2.44(P2O7)2/C synthesized via a flash-combustion strategy. J Mater Chem A 4:2550–2559CrossRefGoogle Scholar
  17. 17.
    Li HX, Zhang ZA, Xu M, Bao WZ, Lai YQ, Zhang K, Li J (2018) Triclinic off-stoichiometric Na3.12Mn2.44(P2O7)2/C cathode materials for high-energy/power sodium-ion batteries. ACS Appl Mater Interfaces 10:24564–24572CrossRefGoogle Scholar
  18. 18.
    Ko W, Park T, Park H, Lee Y, Leeb KE, Kim J (2018) Na0.97KFe(SO4)2: an iron-based sulfate cathode material with outstanding cyclability and power capability for Na-ion batteries. J Mater Chem A 6:17095–17100CrossRefGoogle Scholar
  19. 19.
    Dwibedi D, Araujo RB, Chakraborty S, Shanbogh PP, Sundaram NG, Ahujab R, Barpanda P (2015) Na2.44Mn1.79(SO4)3: a new member of the alluaudite family of insertion compounds for sodium ion batteries. J Mater Chem A 3:18564–18571CrossRefGoogle Scholar
  20. 20.
    Zhang S, Deng C, Meng Y (2014) Bicontinuous hierarchical Na7V4(P2O7)4(PO4)/C nanorod-graphene composite with enhanced fast sodium and lithium ions intercalation chemistry. J Mater Chem A 2:20538–20544CrossRefGoogle Scholar
  21. 21.
    Barpanda P, Oyama G, Nishimura S, Chung SC, Yamada A (2014) A 3.8-V Earth-abundant sodium battery electrode. Nat Commun 5:4358CrossRefGoogle Scholar
  22. 22.
    Ming J, Barpanda P, Nishimura SI, Okubo M, Yamada A (2015) An alluaudite Na2+2xFe2−x(SO4)3 (x=0.2) derivative phase as insertion host for lithium battery. Electrochem Commun 51:19–22CrossRefGoogle Scholar
  23. 23.
    Oyama G, Nishimura SI, Suzuki Y, Okubo M, Yamada A (2015) Off-stoichiometry in alluaudite-type sodium iron sulfate Na2+2xFe2−x(SO4)3 as an advanced sodium battery cathode material. Chem Electro Chem 2:1019–1023Google Scholar
  24. 24.
    Wong LL, Chen HM, Adams S (2015) Sodium-ion diffusion mechanisms in the low cost high voltage cathode material Na(2+δ)Fe(2-δ/2)(SO4)3. Phys Chem Chem Phys 17:9186–9193CrossRefGoogle Scholar
  25. 25.
    Lu JC, Yamada A (2016) Ionic and electronic transport in alluaudite Na2+2xFe2-x(SO4)3. Chem Electro Chem 3:902–905Google Scholar
  26. 26.
    Meng Y, Li QF, Yu TT, Zhang S, Deng C (2016) Architecture–property relationships of zero-, one- and two-dimensional carbon matrix incorporated Na2Fe(SO4)2·2H2O/C. Cryst Eng Comm 18:1645–1654CrossRefGoogle Scholar
  27. 27.
    Meng Y, Zhang S, Deng C (2015) Superior sodium–lithium intercalation and depressed moisture sensitivity of a hierarchical sandwich-type nanostructure for a graphene–sulfate composite: a case study on Na2Fe(SO4)2·2H2O. J Mater Chem A 3:4484–4492CrossRefGoogle Scholar
  28. 28.
    Liu Q, Wang DX, Yang X, Chen N, Wang CZ, Bie XF, Wei YJ, Chen G, Du F (2015) Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. J Mater Chem A 3:21478–21485CrossRefGoogle Scholar
  29. 29.
    Ni Q, Bai Y, Wu F, Wu C (2017) Polyanion-type electrode materials for sodium-ion batteries. Adv Sci (Weinh) 4:1600275CrossRefGoogle Scholar
  30. 30.
    Meng Y, Yu TT, Zhang S, Deng C (2016) Top-down synthesis of muscle-inspired alluaudite Na2+2xFe2−x(SO4)3/SWNT spindle as a high-rate and high-potential cathode for sodium-ion batteries. J Mater Chem A 4:1624–1631CrossRefGoogle Scholar
  31. 31.
    Yu TT, Lin B, Li QF, Wang XG, Qu WL, Zhang S, Deng C (2016) First exploration of freestanding and flexible Na2+2xFe2-x(SO4)3@porous carbon nanofiber hybrid films with superior sodium intercalation for sodium ion batteries. Phys Chem Chem Phys 18:26933–26941CrossRefGoogle Scholar
  32. 32.
    Zhang M, Qi H, Qiu HL, Zhang T, Zhao XS, Yue HJ, Chen G, Wang CZ, Wei YJ, Zhang D (2018) Reduced graphene oxide wrapped alluaudite Na2+2xFe2-x(SO4)3 with high rate sodium ion storage properties. J Alloys Compd 752:267–273CrossRefGoogle Scholar
  33. 33.
    Yao Y, Wu F (2015) Naturally derived nanostructured materials from biomass for rechargeable lithium/sodium batteries. Nano Energy 17:91–103CrossRefGoogle Scholar
  34. 34.
    Xiang JY, Lv WM, Mu CP, Zhao J, Wang BC (2017) Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J Alloys Compd 701:870–874CrossRefGoogle Scholar
  35. 35.
    Hou JH, Cao CB, Ma XL, Idrees F, Xu B, Hao X, Lin W (2014) From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon. Sci Rep 4:7260CrossRefGoogle Scholar
  36. 36.
    Cui JL, Cui YF, Li SH, Sun HL, Wen ZS, Sun JC (2016) Microsized porous SiOx@C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries. ACS Appl Mater Interfaces 8:30239–30247CrossRefGoogle Scholar
  37. 37.
    Kaviyarasu K, Manikandan E, Kennedy J, Jayachandran M, Maaza M (2016) Rice husks as a sustainable source of high quality nanostructured silica for high performance Li-ion battery requital by sol-gel method—a review. Adv Mater Lett 7:684–696CrossRefGoogle Scholar
  38. 38.
    Yuan CJ, Lin HB, Lu HY, Xing ED, Zhang YS, Xie BY (2016) Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors. Appl Energy 178:260–268CrossRefGoogle Scholar
  39. 39.
    Zhang YC, You Y, Xin S, Yin YX, Zhang J, Wang P, Zheng XS, Cao FF, Guo YG (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127CrossRefGoogle Scholar
  40. 40.
    Zhang SW, Gao HH, Li JX, Huang YS, Alsaedi A, Hayat T, Xu XJ, Wang XK (2017) Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis. J Hazard Mater 321:92–102CrossRefGoogle Scholar
  41. 41.
    Li Y, Wang FY, Liang JC, Hu XY, Yu KF (2016) Preparation of disordered carbon from rice husks for lithium-ion batteries. New J Chem 40:325–329CrossRefGoogle Scholar
  42. 42.
    Wei SH, Benoit MDB, Oyama G, Nishimura S-I, Yamada A (2016) Synthesis and electrochemistry of Na2.5(Fe1−yMny)1.75(SO4)3solid solutions for Na-ion batteries. Chem Electro Chem 3:209–213Google Scholar
  43. 43.
    Wang W, Liu XH, Xu QJ, Liu HM, Wang YG, Xia YY, Chao YL, Ai XP (2018) A high voltage cathode of Na2+2xFe2-x(SO4)3 intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. J Mater Chem A 6:4354–4364CrossRefGoogle Scholar
  44. 44.
    Zhang H, Yu FQ, Kang WP, Shen Q (2015) Encapsulating selenium into macro-/micro-porous biochar-based framework for high-performance lithium-selenium batteries. Carbon 95:354–363CrossRefGoogle Scholar
  45. 45.
    Qiu HL, Zhu K, Li HM, Li TT, Zhang T, Yue HJ, Wei YJ, Du F, Wang CZ, Chen G, Zhang D (2015) Mesoporous Li2FeSiO4@ordered mesoporous carbon composites cathode material for lithium-ion batteries. Carbon 87:365–373CrossRefGoogle Scholar
  46. 46.
    Sobkowiak A, Ericsson T, Edström K, Gustafsson T, Björefors F, Häggsröm L (2013) A Mössbauer spectroscopy study of polyol synthesized tavorite LiFeSO4F. Hyperfine Interact 226:229–236CrossRefGoogle Scholar
  47. 47.
    Lee JT, Kim H, Oschatz M, Lee DC, Wu FX, Lin HT, Zdyrko B, Cho WI, Kaskel S, Yushin G (2015) Micro- and mesoporous carbide-derived carbon-selenium cathodes for high-performance lithium selenium batteries. Adv Energy Mater 5:1400981CrossRefGoogle Scholar
  48. 48.
    Barpanda P (2016) Pursuit of sustainable iron-based sodium battery cathodes: two case studies. Chem Mater 47:1006–1011CrossRefGoogle Scholar
  49. 49.
    Oyama G, Pecher O, Griffith KJ, Nishimura S, Pigliapochi R, Grey CP, Yamada A (2016) Sodium intercalation mechanism of 3.8 V class alluaudite sodium iron sulfate. Chem Mater 28:5321–5328CrossRefGoogle Scholar
  50. 50.
    Guo ZD, Zhang D, Qiu HL, Zhang T, Fu Q, Zhang LJ, Yan X, Meng X, Chen G, Wei YJ (2015) Improved cycle stability and rate capability of graphene oxide wrapped tavorite LiFeSO4F as cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 7:13972–13979CrossRefGoogle Scholar
  51. 51.
    Bian XF, Fu Q, Qiu HL, Du F, Gao Y, Zhang LJ, Zou B, Chen G, Wei YJ (2015) High-performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4M5O12 heterostructured cathode material coated with a lithium borate oxide glass layer. Chem Mater 27:5745–5754CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Physics and Technology for Advance Batteries (Ministry of Education), College of PhysicsJilin UniversityChangchunPeople’s Republic of China
  2. 2.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  3. 3.The Second Hospital of Jilin UniversityChangchunPeople’s Republic of China
  4. 4.State Key Laboratory of Superhard MaterialsJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations