Advertisement

Ionics

pp 1–7 | Cite as

Synthesis and electrochemical properties of Er/α-MnO2 microspheres for supercapacitors application

  • Hua LinEmail author
  • Meng Zhang
  • Jie Miao
  • Lu Li
  • Kaiyao Xin
  • Xingyuan Liao
  • Zhihao Feng
Original Paper
  • 16 Downloads

Abstract

Er-doped α-MnO2 (Er/α-MnO2) microspheres were successfully synthesized via a chemical process. The various techniques were used to investigate the crystal structures, morphologies, valence states, and electrochemical performances of the as-prepared materials. The results showed that Er can be doped into the lattice of α-MnO2 as Er3+ to distinctly affect the structure of α-MnO2. The as-obtained Er(1.5 at.%)/α-MnO2 presented the most optimized structure with a surface composed of many regular layered triangles. The specific capacitance of Er(1.5 at.%)/α-MnO2 electrodes reached 224.3 F g−1 at a current density of 0.25 A g−1 with a capacity retention ratio of 93.7% after 2000 cycles at a current density of 1.0 A g−1. The values were higher than those of α-MnO2 synthesized under the same conditions. Overall, these findings look promising for future applications of rare elements in modified MnO2.

Keywords

Electrochemical performance α-MnO2 Er-doping Supercapacitor 

Notes

Funding information

This work was supported by the Fundamental Research Funds for the Central Universities Key Project (Grant No. XDJK2017B062) and the National Science Foundation for Young Scientists of China (Grant No.51605392).

References

  1. 1.
    Yu P, Zhang X, Chen Y, Ma Y, Qi Z (2009) Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method. Mater Chem Phys 118(2–3):303–307CrossRefGoogle Scholar
  2. 2.
    He W, Yang W, Wang C, Deng X, Liu B, Xu X (2016) Morphology-controlled syntheses of α-MnO2 for electrochemical energy storage. Phys Chem Chem Phys 18(22):15235–15243CrossRefGoogle Scholar
  3. 3.
    Wang T, Dong F, Zhang YX (2016) Diverse birnessite MnO2 nanosheets-based nanocomposites for supercapacitors. Mater Lett 171:319–322CrossRefGoogle Scholar
  4. 4.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRefGoogle Scholar
  5. 5.
    Zhang J, Jiang J, Zhao XS (2011) Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J Phys Chem C 115(14):6448–6454CrossRefGoogle Scholar
  6. 6.
    Zheng H, Wang J, Jia Y (2012) In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors. J Power Sources 216:508–514CrossRefGoogle Scholar
  7. 7.
    Gao S, Fan L, Shao M et al (2015) Network-like mesoporous NiCo2O4 grown on carbon cloth for high-performance pseudocapacitors. J Mater Chem A 3:16520–16527CrossRefGoogle Scholar
  8. 8.
    Sharma RK, Karakoti A, Seal S, Zhai L (2010) Multiwall carbon nanotube-poly(4-styrenesulfonic acid) supported polypyrrole/manganese oxide nano-composites for high performance electrochemical electrodes. J Power Sources 195(4):1256–1262CrossRefGoogle Scholar
  9. 9.
    Liu R, Duay J, Lee SB (2011) Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/poly (3, 4-ethylenedioxythiophene) nanowires. ACS Nano 5(7):5608–5619CrossRefGoogle Scholar
  10. 10.
    Yang Q, Zhang XT, Zhang MY, Gao Y, Gao H, Liu XC, Liu H, Wong KW, Lau WM (2014) Rationally designed hierarchical MnO2-shell/ZnO-nanowire/carbon-fabric for high-performance supercapacitor electrodes. J Power Sources 272:654–660CrossRefGoogle Scholar
  11. 11.
    Dai YH, Kong LB, Yan K, Shi M, Luo YC, Kang L (2016) Facile fabrication of manganese phosphate nanosheets for supercapacitor applications. Ionics 22(8):1461–1469CrossRefGoogle Scholar
  12. 12.
    Wang X, Xia H, Shao M et al (2016) Enhanced cycle performance of ultraflexible asymmetric supercapacitors based on a hierarchical MnO2@NiMoO4 core–shell nanostructure and porous carbon. J Mater Chem A 4:18181–18187CrossRefGoogle Scholar
  13. 13.
    Miao J, Lin H, Mao Z et al (2018) Electrochemical performance of Sn-doped δ-MnO2 hollow nanoparticles for supercapacitors. J Mater Sci Mater Electron 29(4):2689–2697CrossRefGoogle Scholar
  14. 14.
    Zhang X, Yu P, Zhang H, Zhang D, Sun X, Ma Y (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529CrossRefGoogle Scholar
  15. 15.
    Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417CrossRefGoogle Scholar
  16. 16.
    Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces 1(5):1130–1139CrossRefGoogle Scholar
  17. 17.
    Brousse T, Toupin M, Dugas R, Athouël L, Crosnier O, Bélanger D (2006) Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153(12):A2171–A2180CrossRefGoogle Scholar
  18. 18.
    Lv Z, Zhong Q, Zhao Z et al (2017) Facile synthesis of hierarchical nickel-cobalt sulfide quadrangular microtubes and its application in hybrid supercapacitors. J Mater Sci Mater Electron 28(23):18064–18074CrossRefGoogle Scholar
  19. 19.
    Xiao X, Li T, Yang P, Gao Y, Jin H, Ni W, Zhan W, Zhang X, Cao Y, Zhong J, Gong L, Yen WC, Mai W, Chen J, Huo K, Chueh YL, Wang ZL, Zhou J (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10):9200–9206CrossRefGoogle Scholar
  20. 20.
    Bao L, Zang J, Li X (2011) Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett 11(3):1215–1220CrossRefGoogle Scholar
  21. 21.
    Su X, Yu L, Cheng G, Zhang H, Sun M, Zhang L, Zhang J (2014) Controllable hydrothermal synthesis of Cu-doped δ-MnO2 films with different morphologies for energy storage and conversion using supercapacitors. Appl Energy 134:439–445CrossRefGoogle Scholar
  22. 22.
    Hu Z, Xiao X, Chen C, Li T, Huang L, Zhang C, Su J, Miao L, Jiang J, Zhang Y, Zhou J (2015) Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability. Nano Energy 11:226–234CrossRefGoogle Scholar
  23. 23.
    Ge X, Song X, Ma Y, Zhou H, Wang G, Zhang H, Zhang Y, Zhao H, Wong PK (2016) Fabrication of hierarchical iron-containing MnO2 hollow microspheres assembled by thickness-tunable nanosheets for efficient phosphate removal. J Mater Chem A 4(38):14814–14826CrossRefGoogle Scholar
  24. 24.
    Tang CL, Wei X, Jiang YM, Wu XY, Han L−N, Wang KX, Chen JS (2015) Cobalt-doped MnO2 hierarchical yolk-shell spheres with improved supercapacitive performance. J Phys Chem C 119(16):8465–8471CrossRefGoogle Scholar
  25. 25.
    Zhao S, Liu T, Zhang Y et al (2016) Cr-doped MnO2 nanostructure: morphology evolution and electrochemical properties. J Mater Sci Mater Electron 27(4):3265–3270CrossRefGoogle Scholar
  26. 26.
    Sun Y, Zhao Z, Peng L et al (2015) Er-doped ZnO nanofibers for high sensibility detection of ethanol. Appl Surf Sci 356:73–80CrossRefGoogle Scholar
  27. 27.
    Yang Y, Pu H, Di J et al (2018) Synthesis and characterization of monolayer Er-doped MoS2 films by chemical vapor deposition. Scr Mater 152:64–68CrossRefGoogle Scholar
  28. 28.
    Yang J, Hu Y, Jin C, Zhuge L, Wu X (2017) Structural and optical properties of Er-doped TiO2 thin films prepared by dual-frequency magnetron co-sputtering. Thin Solid Films 637:9–13CrossRefGoogle Scholar
  29. 29.
    Jin L, Li G, Liu B, Li Z, Zheng J, Zheng JP (2017) A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer. J Power Sources 355:147–153CrossRefGoogle Scholar
  30. 30.
    Salhi R, Deschanvres JL (2016) Efficient green and red up-conversion emissions in Er/Yb co-doped TiO2 nanopowders prepared by hydrothermal-assisted sol-gel process. J Lumin 176:250–259CrossRefGoogle Scholar
  31. 31.
    Wang F, Xu G, Jin C (2018) Synthesis and electrochemical performance for supercapacitors of Bi-doped α-MnO2 nanorods. Chem J Chin Univ 39:530–536Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hua Lin
    • 1
    Email author
  • Meng Zhang
    • 1
  • Jie Miao
    • 1
  • Lu Li
    • 1
  • Kaiyao Xin
    • 1
  • Xingyuan Liao
    • 1
  • Zhihao Feng
    • 1
  1. 1.Faculty of Materials and EnergySouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations