, Volume 25, Issue 7, pp 3009–3020 | Cite as

Effect of Cu2+ on Li [Li0.2Ni0.2Co0.08Mn0.52]O2 at different stages

  • Hui Liu
  • Enshan HanEmail author
  • Ling Li
  • Lingzhi Zhu
  • Lina Li
  • Chenglei Zhang
  • Lijun Dou
Original Paper


Cathode material Li [Li0.2Ni0.2Co0.08Mn0.52−xCux]O2 (x = 0, 0.01, 0.03, 0.05, 0.07) has been synthesized via carbonate coprecipitation method and modified by Cu2+ which was introduced at different stages. The crystal structure features, morphology, and electrochemical properties of the powders are studied in detail using X-ray diffraction spectroscopy, scanning electron microscopy, EDS spectroscopy, and electrochemical measurements. The experimental results show that the electrochemical properties of Li [Li0.2Ni0.2Co0.08Mn0.52−xCux]O2 (x = 0, 0.01, 0.03, 0.05, 0.07) oxides are improved. This is because an appropriate amount of Cu2+ doping increases the lattice spacing of the layered material, reduces the agglomeration of the particles, and improves the uniformity of the particles. Especially in the coprecipitation stage, Cu2+ was introduced and x = 3% showed better rate and cycle performance. The specific discharge capacity at 1C and 2C was 197.28 mAhg−1 and 124.92 mAhg−1, respectively, and cycle returned to 0.1C capacity after 45 cycles, the discharge specific capacity is still up to 261.5 mAhg−1.


Lithium-ion battery Carbonate coprecipitation method Lithium-rich cathode material Cu2+ doping Electrochemical performance 



  1. 1.
    Sun Y, Lee HW, Seh ZW, Liu N, Sun J, Li Y, Cui Y (2016) High-capacity battery cathode prelithiation to offset initial lithium loss. Nat Energy 1(1):15008CrossRefGoogle Scholar
  2. 2.
    Fu F, Yao Y, Wang H, Xu GL, Amine K, Sun SG, Shao M (2017) Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries. Nano Energy 35:370–378CrossRefGoogle Scholar
  3. 3.
    Wang H, Ben L, Yu H, Chen Y, Yang X, Huang X (2017) Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures. J Mater Chem A 5(2):822–834CrossRefGoogle Scholar
  4. 4.
    Zheng F, Ou X, Pan Q et al (2017) The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides. J Power Sources 346:31–39CrossRefGoogle Scholar
  5. 5.
    Muhammad S, Kim H, Kim Y, Kim D, Song JH, Yoon J, Park JH, Ahn SJ, Kang SH, Thackeray MM, Yoon WS (2016) Evidence of reversible oxygen participation in anomalously high capacity Li-and Mn-rich cathodes for Li-ion batteries. Nano Energy 21:172–184CrossRefGoogle Scholar
  6. 6.
    Tan G, Wu F, Lu J, Chen R, Li L, Amine K (2014) Controllable crystalline preferred orientation in Li–Co–Ni–Mn oxide cathode thin films for all-solid-state lithium batteries. Nanoscale 6(18):10611–10622CrossRefGoogle Scholar
  7. 7.
    Hu YS, Guo YG, Dominko R et al (2007) Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater 19(15):1963–1966CrossRefGoogle Scholar
  8. 8.
    Lee Y, Sun YK, Nahm KS (1998) Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol–gel method for lithium secondary batteries. Solid State Ionics 109(3–4):285–294CrossRefGoogle Scholar
  9. 9.
    Scrosati B (2000) Recent advances in lithium ion battery materials. Electrochim Acta 45(15–16):2461–2466CrossRefGoogle Scholar
  10. 10.
    Hong J, Lim HD, Lee M, Kim SW, Kim H, Oh ST, Chung GC, Kang K (2012) Critical role of oxygen evolved from layered Li–excess metal oxides in lithium rechargeable batteries. Chem Mater 24(14):2692–2697CrossRefGoogle Scholar
  11. 11.
    Johnson CS, Kim JS, Lefief C, Li N, Vaughey JT, Thackeray MM (2004) The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun 6(10):1085–1091CrossRefGoogle Scholar
  12. 12.
    Hy S, Su WN, Chen JM, Hwang BJ (2012) Soft X-ray absorption spectroscopic and Raman studies on Li1.2Ni0.2Mn0.6O2 for lithium-ion batteries. J Phys Chem C 116(48):25242–25247CrossRefGoogle Scholar
  13. 13.
    Karthikeyan K, Amaresh S, Lee GW, Aravindan V, Kim H, Kang KS, Kim WS, Lee YS (2012) Electrochemical performance of cobalt free, Li1.2(Mn0.32Ni0.32Fe0.16)O2 cathodes for lithium batteries. Electrochim Acta 68:246–253CrossRefGoogle Scholar
  14. 14.
    Shi SJ, Tu JP, Tang YY, Yu YX, Zhang YQ, Wang XL, Gu CD (2013) Combustion synthesis and electrochemical performance of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14–23CrossRefGoogle Scholar
  15. 15.
    Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22(3):691–714CrossRefGoogle Scholar
  16. 16.
    Min JW, Yim CJ, Im WB (2013) Facile synthesis of electrospun Li1.2Ni0.17Co0.17Mn0.5O2 nanofiber and its enhanced high-rate performance for lithium-ion battery applications. ACS Appl Mater Interfaces 5(16):7765–7769CrossRefGoogle Scholar
  17. 17.
    Li F, Zhao SX, Wang KZ, Li BH, Nan CW (2013) Structural and electrochemical performance of layered high-Mn cathode materials Li1+m [NimComMn1-2m]O2 for lithium rechargeable batteries. Electrochim Acta 97:17–22CrossRefGoogle Scholar
  18. 18.
    Chen H, Hu Q, Huang Z, He Z, Wang Z, Guo H, Li X (2016) Synthesis and electrochemical study of Zr-doped Li [Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceram Int 42(1):263–269CrossRefGoogle Scholar
  19. 19.
    Zheng J, Xu P, Gu M, Xiao J, Browning ND, Yan P, Wang C, Zhang JG (2015) Structural and chemical evolution of Li-and Mn-rich layered cathode material. Chem Mater 27(4):1381–1390CrossRefGoogle Scholar
  20. 20.
    Gao Y, Wang X, Ma J, Wang Z, Chen L (2015) Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations. Chem Mater 27(9):3456–3461CrossRefGoogle Scholar
  21. 21.
    Zhang HZ, Qiao QQ, Li GR, Ye SH, Gao XP (2012) Surface nitridation of Li-rich layered Li (Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery. J Mater Chem 22(26):13104–13109CrossRefGoogle Scholar
  22. 22.
    Kong JZ, Wang CL, Qian X, Tai GA, Li AD, Wu D, Li H, Zhou F, Yu C, Sun Y, Jia D, Tang WP (2015) Enhanced electrochemical performance of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with graphene-like lithium-active MoS2. Electrochim Acta 174:542–550CrossRefGoogle Scholar
  23. 23.
    Kim JS, Johnson CS, Vaughey JT, Thackeray MM (2006) Pre-conditioned layered electrodes for lithium batteries. J Power Sources 153(2):258–264CrossRefGoogle Scholar
  24. 24.
    He Z, Wang Z, Huang Z, Chen H, Li X, Guo H (2015) A novel architecture designed for lithium rich layered Li [Li0.2Mn0.54Ni0.13Co0.13]O2 oxides for lithium-ion batteries. J Mater Chem A 3(32):16817–16823CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Xia M, Hu X, Zhao Z, Wang Y, Lv Z (2015) Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials. Electrochim Acta 174:1167–1174CrossRefGoogle Scholar
  26. 26.
    Wang YX, Shang KH, He W, Ai XP, Cao YL, Yang HX (2015) Magnesium-doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 7(23):13014–13021CrossRefGoogle Scholar
  27. 27.
    Molenda J, Marzec J, Świerczek K et al (2004) The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel. Solid State Ionics 171(3–4):215–227CrossRefGoogle Scholar
  28. 28.
    Yang MC, Xu B, Cheng JH, Pan CJ, Hwang BJ, Meng YS (2011) Electronic, Structural, and Electrochemical Properties of LiNixCuyMn2-x-yO4 (0<x<0.5),(0<y<0.5) High-Voltage Spinel Materials. Chem Mater 23(11):2832–2841CrossRefGoogle Scholar
  29. 29.
    Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887CrossRefGoogle Scholar
  30. 30.
    Zhou L, Zhao D, Lou XW (2012) LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew Chem 124(1):243–245CrossRefGoogle Scholar
  31. 31.
    Wang D, Belharouak I, Zhou G et al (2013) Nanoarchitecture multi-structural cathode materials for high capacity Lithium batteries. Adv Funct Mater 23(8):1070–1075CrossRefGoogle Scholar
  32. 32.
    Zhang L, Wu B, Li N, Mu D, Zhang C, Wu F (2013) Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. J Power Sources 240:644–652CrossRefGoogle Scholar
  33. 33.
    Gong ZL, Liu HS, Guo XJ et al (2004) Effects of preparation methods of LiNi0.8Co0.2O2 cathode materials on their morphology and electrochemical performance. J Power Sources 136(1):139–144CrossRefGoogle Scholar
  34. 34.
    Gong C, Lv W, Qu L, Bankole OE, Li G, Zhang R, Hu M, Lei L (2014) Syntheses and electrochemical properties of layered Li0.95Na0.05Ni1/3Co1/3Mn1/3O2 and LiNi1/3Co1/3Mn1/3O2. J Power Sources 247:151–155CrossRefGoogle Scholar
  35. 35.
    Hua W, Zhang J, Zheng Z, Liu W, Peng X, Guo XD, Zhong B, Wang YJ, Wang X (2014) Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2cathode material with both high rate capability and high tap density for lithium ion batteries. Dalton Trans 43(39):14824–14832CrossRefGoogle Scholar
  36. 36.
    Ramana CV, Ait-Salah A, Utsunomiya S, Mauger A, Gendron F, Julien CM (2007) Novel lithium iron pyrophosphate (LiFe1.5P2O7) as a positive electrode for Li-ion batteries. Chem Mater 19(22):5319–5324CrossRefGoogle Scholar
  37. 37.
    Yang S, Wang X, Yang X, Bai Y, Liu Z, Shu H, Wei Q (2012) Determination of the chemical diffusion coefficient of lithium ions in spherical LiNi0.5Co0.2Mn0.3O2. Electrochim Acta 66:88–93CrossRefGoogle Scholar
  38. 38.
    Grey CP, Yoon WS, Reed J, Ceder G (2004) Electrochemical activity of Li in the transition-metal sites of O3 Li [Li1-2x/3Mn2-x/3Nix]O2. Electrochem Solid-State Lett 7(9):A290–A293CrossRefGoogle Scholar
  39. 39.
    Kang SH, Johnson CS, Vaughey JT, Amine K, Thackeray MM (2006) The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. J Electrochem Soc 153(6):A1186–A1192CrossRefGoogle Scholar
  40. 40.
    Koyama Y, Tanaka I, Adachi H et al (2003) Crystal and electronic structures of superstructural Li1-x [Ni1/3Co1/3Mn1/3]O2 (0≤x≤1). J Power Sources 119:644–648CrossRefGoogle Scholar
  41. 41.
    Naoaki Y, Yukinori K, Noriaki N (2005) Solid-state chemistry and electrochemistry of Li [Ni1/3Co1/3Mn1/3]O2 for advanced lithium-ion batteries. J Electrochem Soc 152(7):1434–1440CrossRefGoogle Scholar
  42. 42.
    Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’electrodes for lithium-ion batteries. J Mater Chem 15(23):2257–2267CrossRefGoogle Scholar
  43. 43.
    Li L, Song BH, Chang YL, Xia H, Yang JR, Lee KS, Lu L (2015) Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J Power Sources 283:162–170CrossRefGoogle Scholar
  44. 44.
    Johnson CS, Li N, Lefief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50°C. Electrochem Commun 9(4):787–795CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hui Liu
    • 1
  • Enshan Han
    • 1
    Email author
  • Ling Li
    • 1
  • Lingzhi Zhu
    • 1
  • Lina Li
    • 1
  • Chenglei Zhang
    • 1
  • Lijun Dou
    • 1
  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations