, Volume 25, Issue 7, pp 3069–3077 | Cite as

Controlled synthesis of alkalized Ti3C2 MXene-supported β-FeOOH nanoparticles as anodes for lithium-ion batteries

  • Chenting Xue
  • Ying HeEmail author
  • Yijun Liu
  • Petr Saha
  • Qilin ChengEmail author
Original Paper


Ti3C2 MXene, a new family of two-dimensional (2D) materials with metallic conductivity and excellent electrochemical stability, is one of the most promising materials for energy storage. However, its limited interlayer distance and low capacity still impede its further application in Li+ batteries. To address this problem, a facile wet chemical method is developed to construct β-FeOOH/Ti3C2 composites assisted by the alkalization treatment of Ti3C2. The structural and electrochemical properties of β-FeOOH/Ti3C2 are influenced by alkalization treatment and Fe3+ content. The alkalized Ti3C2 offers larger structural pathway for easy lithium ion transport and buffers the volume changes of FeOOH during lithiation/delithiation. As a result, the β-FeOOH/Ti3C2 composite anodes exhibit good rate performance with a capacity of 332 mAh g−1 at 0.5 A g−1 and an improved cycling capacity 432 mAh g−1 at 0.2 A g−1 after 400 cycles. This study is expected to stimulate the intensive research and development on the MXene-based materials for lithium-ion batteries.


MXene, Ti3C2, FeOOH Lithium ion battery, Electrochemical properties 


Funding information

This work was supported by National Key R&D Program of China (2016YFE0131200), the National Natural Science Foundation of China (51702098), International Cooperation Project of Shanghai Municipal Science and Technology Committee (18520744400), and Research Program supported by the Ministry of Education, Youth, and Sports of the Czech Republic (LTACH17015).


  1. 1.
    Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854–7863CrossRefGoogle Scholar
  2. 2.
    Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRefGoogle Scholar
  3. 3.
    Karden E, Ploumen S, Fricke B, Miller T, Snyder K (2007) Energy storage devices for future hybrid electric vehicles. J Power Sources 168:2–11CrossRefGoogle Scholar
  4. 4.
    Liu YT, Zhang P, Sun N, Anasori B, Zhu QZ, Liu H, Gogotsi Y, Xu B (2018) Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv Mater 30:1707334CrossRefGoogle Scholar
  5. 5.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRefGoogle Scholar
  6. 6.
    Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D (2013) Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem 125:6545–6548CrossRefGoogle Scholar
  7. 7.
    Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006CrossRefGoogle Scholar
  8. 8.
    Zhou X, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152–2157CrossRefGoogle Scholar
  9. 9.
    Chen Z, Gao Y, Zhang Q, Li L, Ma P, Xing B, Zhang Z (2019) TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries. J Alloys Compd 774:873–878CrossRefGoogle Scholar
  10. 10.
    Wang X, Chen X, Gao L, Zheng H, Ji M, Tang C, Shen T, Zhang Z (2004) Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH. J Mater Chem 14:905–907CrossRefGoogle Scholar
  11. 11.
    Flynn CM Jr (1984) Hydrolysis of inorganic iron (III) salts. Chem Rev 84:31–41CrossRefGoogle Scholar
  12. 12.
    Amine K, Yasuda H, Yamachi M (1999) β-FeOOH, a new positive electrode material for lithium secondary batteries. J Power Sources 81:221–223CrossRefGoogle Scholar
  13. 13.
    Yu L, Xi S, Wei C, Zhang W, Du Y, Yan Q, Xu Z (2015) Superior lithium storage properties of β-FeOOH. Adv Energy Mater 5:1401517CrossRefGoogle Scholar
  14. 14.
    Sun Y, Hu X, Luo W, Xu H, Hu C, Huang Y (2013) Synthesis of amorphous FeOOH/reduced graphene oxide composite by infrared irradiation and its superior lithium storage performance. ACS Appl Mater Interfaces 5:10145–10150CrossRefGoogle Scholar
  15. 15.
    Imtiaz M, Chen Z, Zhu C, Pan H, Zada I, Li Y, Zhu S (2018) In situ growth of β-FeOOH on hierarchically porous carbon as anodes for high-performance lithium-ion batteries. Electrochim Acta 283:401–409CrossRefGoogle Scholar
  16. 16.
    Zhang E, Wang B, Yu X, Zhu J, Wang L, Lu B (2017) β-FeOOH on carbon nanotubes as a cathode material for Na-ion batteries. Energy Storage Mater 8:147–152CrossRefGoogle Scholar
  17. 17.
    Zhang M, Han D, Lu P (2017) PEDOT encapsulated β-FeOOH nanorods: synthesis, characterization and application for sodium-ion batteries. Electrochim Acta 238:330–336CrossRefGoogle Scholar
  18. 18.
    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253CrossRefGoogle Scholar
  19. 19.
    Lei JC, Zhang X, Zhou Z (2015) Recent advances in MXene: preparation, properties, and applications. Front Phys 10:276–286CrossRefGoogle Scholar
  20. 20.
    Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6:11173–11179CrossRefGoogle Scholar
  21. 21.
    Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL, Gogotsi Y (2015) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 27:339–345CrossRefGoogle Scholar
  22. 22.
    Naguib M, Come J, Dyatki B, Presser V, Taberna PL, Simon P, Gogotsi Y (2012) MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun 16:61–64CrossRefGoogle Scholar
  23. 23.
    Xiong D, Li X, Bai Z, Lu S (2018) Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14:1703419CrossRefGoogle Scholar
  24. 24.
    Hu M, Hu T, Li Z, Yang Y, Cheng R, Yang J, Wang X (2018) Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano 12:3578–3586CrossRefGoogle Scholar
  25. 25.
    Hu T, Li Z, Hu M, Wang J, Hu Q, Li Q, Wang X (2017) Chemical origin of termination-functionalized MXenes: Ti3C2T2 as a case study. J Phys Chem C 121:19254–19261CrossRefGoogle Scholar
  26. 26.
    Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H (2017) A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew Chem Int Ed 56:1825–1829CrossRefGoogle Scholar
  27. 27.
    Cheng R, Hu T, Zhang H, Wang C, Hu M, Yang J, Hou P (2018) Understanding the lithium storage mechanism of Ti3C2Tx MXene. J Phys Chem C 123:1099-1109Google Scholar
  28. 28.
    Tang Q, Zhou Z, Shen P (2012) Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 134:16909–16916CrossRefGoogle Scholar
  29. 29.
    Lian P, Dong Y, Wu ZS, Zheng S, Wang X, Wang S, Bao X (2017) Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40:1–8CrossRefGoogle Scholar
  30. 30.
    Bao W, Liu L, Wang C, Choi S, Wang D, Wang G (2018) Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv Energy Mater 8:1702485CrossRefGoogle Scholar
  31. 31.
    Ma Z, Zhou X, Deng W, Lei D, Liu Z (2018) 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl Mater Interfaces 10:3634–3643CrossRefGoogle Scholar
  32. 32.
    Xie X, Kretschmer K, Anasori B, Sun B, Wang G, Gogotsi Y (2018) Porous Ti3C2Tx MXene for ultrahigh-rate sodium-ion storage with long cycle life. ACS Appl Nano Mater 1:505–511CrossRefGoogle Scholar
  33. 33.
    Ren CE, Zhao MQ, Makaryan T, Halim J, Boota M, Kota S, Gogotsi Y (2016) Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 3:689–693CrossRefGoogle Scholar
  34. 34.
    Liu J, Zheng M, Shi X, Zeng H, Xia H (2016) Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv Funct Mater 26:919–930CrossRefGoogle Scholar
  35. 35.
    Guo X, Xie X, Choi S, Zhao Y, Liu H, Wang C, Wang G (2017) Sb2O3/MXene (Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J Mater Chem A 5:12445–12452CrossRefGoogle Scholar
  36. 36.
    Ma K, Jiang H, Hu Y, Li C (2018) 2D Nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries. Adv Funct Mater 28:1804306CrossRefGoogle Scholar
  37. 37.
    Simon P (2017) Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano 11:2393–2396CrossRefGoogle Scholar
  38. 38.
    Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Tao X (2017) Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11:2459–2469CrossRefGoogle Scholar
  39. 39.
    Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505CrossRefGoogle Scholar
  40. 40.
    Luo J, Tao X, Zhang J, Xia Y, Huang H, Zhang L, Zhang W (2016) Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10:2491–2499CrossRefGoogle Scholar
  41. 41.
    Peng Q, Guo J, Zhang Q, Xiang J, Liu B, Zhou A, Tian Y (2014) Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc 136:4113–4116CrossRefGoogle Scholar
  42. 42.
    Luo J, Fang C, Jin C, Yuan H, Sheng O, Fang R, Liang C (2018) Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J Mater Chem A 6:7794–7806CrossRefGoogle Scholar
  43. 43.
    Luo J, Wang C, Wang H, Hu X, Matios E, Lu X, Li W (2019) Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv Funct Mater 29:1805946Google Scholar
  44. 44.
    Shah SA, Habib T, Gao H, Gao P, Sun W, Green MJ, Radovic M (2017) Template-free 3D titanium carbide (Ti3C2Tx) MXene particles crumpled by capillary forces. Chem Commun 53:400–403CrossRefGoogle Scholar
  45. 45.
    Li N, Wei S, Xu Y, Liu J, Wu J, Jia G, Cui X (2018) Synergetic enhancement of oxygen evolution reaction by Ti3C2Tx nanosheets supported amorphous FeOOH quantum dots. Electrochim Acta 290:364–368CrossRefGoogle Scholar
  46. 46.
    Peng S, Yu L, Sun M, Cheng G, Lin T, Mo Y, Li Z (2015) Bunched akaganeite nanorod arrays: preparation and high-performance for flexible lithium-ion batteries. J Power Sources 296:237–244CrossRefGoogle Scholar
  47. 47.
    Qi H, Cao L, Li J, Huang J, Xu Z, Cheng Y, Yanagisawa K (2016) High pseudocapacitance in FeOOH/rGO composites with superior performance for high rate anode in Li-ion battery. ACS Appl Mater Interfaces 8:35253–35263CrossRefGoogle Scholar
  48. 48.
    Ahmed B, Anjum DH, Gogotsi Y, Alshareef HN (2017) Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 34:249–256CrossRefGoogle Scholar
  49. 49.
    Sun H, Xin G, Hu T, Yu M, Shao D, Sun X, Lian J (2014) High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat Commun 5:4526CrossRefGoogle Scholar
  50. 50.
    Zhu K, Zhang Y, Qiu H, Meng Y, Gao Y, Meng X, Wei Y (2016) Hierarchical Fe3O4 microsphere/reduced graphene oxide composites as a capable anode for lithium-ion batteries with remarkable cycling performance. J Alloys Compd 675:399–406CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Centre of Polymer SystemsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations