, Volume 25, Issue 7, pp 3021–3030 | Cite as

The effects of Cr substitution on LiNi0.65Co0.1Mn0.25O2 for lithium-ion batteries

  • Lamei Sun
  • Lingzhi ZhuEmail author
  • Chen Mi
  • Enshan Han
  • Mei Shang
  • Zhenzhen Zeng
Original Paper


LiNi0.65-xCo0.1Mn0.25CrxO2 were synthesized via hydroxide co-precipitation method. The electrochemical test results show that compared with the pure phase material, the charge and discharge performance of the doped material at high current density is better. The initial discharge specific capacity of LiNi0.64Co0.1Mn0.25Cr0.01O2 is 210.1, 199.2, 167.1, and 122.7 mAh/g at 0.1C, 0.2C, 0.5C, and 1C, respectively, which is higher than other materials. The capacity retention rate is 93.56% after 10 cycles at 1C, showing good cycle performance and rate performance. The improved electrochemical energy source forms a stable main structure after the Cr enters LiNi0.65Co0.1Mn0.25O2.


Co-precipitation LiNi0.65-xCo0.1Mn0.25CrxO2 High current density 



  1. 1.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430CrossRefGoogle Scholar
  2. 2.
    Kinoshita A, Yanagida K, Yanai A, Kida Y, Funahashi A, Nohma T, Yonezu I (2001) Electrochemical characteristics of LiNi1−xCoxO2 as positive electrode materials for lithium secondary batteries. J Power Sources 102(1–2):283–287CrossRefGoogle Scholar
  3. 3.
    Li D, Peng Z, Ren H, Guo W, Zhou Y (2008) Synthesis and characterization of LiNi1−xCoxO2 for lithium batteries by a novel method. Mater Chem Phys 107(1):171–176CrossRefGoogle Scholar
  4. 4.
    Wu B, Yang X, Zhang Y, Yu R, Gao P, Shu H, Liu L, Wang X (2018) A novel facile synthesis of hollow multi-component Li1.4Mn0.6Co0.2Ni0.2O2+δ, spheres via controlling the porosity of precursor. J Alloys Compounds 744:809–820CrossRefGoogle Scholar
  5. 5.
    Dong M, Wang Z, Li H, Guo H, Li X, Shih K, Wang J (2017) Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material. ACS Sustain Chem Eng 5(11):10199–10205CrossRefGoogle Scholar
  6. 6.
    Liu W, Hu G, Du K et al (2013) Surface coating of LiNi0.8Co0.15Al0.05O2, with LiCoO2 by a molten salt method. Surf Coat Technol 216:267–272CrossRefGoogle Scholar
  7. 7.
    Kim Y, Kim D (2012) Synthesis of high-density nickel cobalt aluminum hydroxide by continuous co-precipitation method. ACS Appl Mater Interfaces 4(2):586–589CrossRefGoogle Scholar
  8. 8.
    Kim MH, Shin HS, Shin D, Sun YK (2006) Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation. J Power Sources 159(2):1328–1333CrossRefGoogle Scholar
  9. 9.
    Gu Y, Jian F (2008) Hollow. LiNi0.8Co0.1Mn0.1O2−MgO coaxial fibers: sol-gel method combined with Co-electrospun preparation and electrochemical properties. J Phys Chem C 112(51):20176–20180CrossRefGoogle Scholar
  10. 10.
    Wang M, Chen Y, Zhang L et al (2014) The doping effect on the electrochemical performance of LiNi0.305Mn0.33Co0.33M0.025O2(M = Al, Y, Cr) for lithium-ion batteries. In: Materials for Renewable Energy and Environment (ICMREE), 2013 International Conference, vol 2, pp 532–536Google Scholar
  11. 11.
    Sun YK, Myung ST, Kim MH, Kim JH (2006) Microscale core-shell structured Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 as positive electrode material for lithium batteries. Electrochem Solid-State Lett 9(3):A171–A174CrossRefGoogle Scholar
  12. 12.
    Liang C, Kong F, Longo RC, KC S, Kim JS, Jeon SH, Choi SA, Cho K (2016) Unraveling the origin of instability in Ni-rich LiNi1-2xCoxMnxO2(NCM) cathode materials. J Phys Chem C 120(12):6383–6393CrossRefGoogle Scholar
  13. 13.
    Belharouak I, Lu W, Vissers D, Amine K (2006) Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochem Commun 8(2):329–335CrossRefGoogle Scholar
  14. 14.
    Hua WB, Guo XD, Zheng Z, Wang YJ, Zhong BH, Fang B, Wang JZ, Chou SL, Liu H (2015) Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2, nanoflowers for high power lithium-ion batteries. J Power Sources 275:200–206CrossRefGoogle Scholar
  15. 15.
    Song HG, Kim JY, Park YJ (2011) Enhanced electrochemical and storage properties of La2/3−xLi3xTiO3-coated Li[Ni0.4Co0.3Mn0.3]O2. Electrochim Acta 56(20):6896–6905CrossRefGoogle Scholar
  16. 16.
    Sun YK, Lee BR, Noh HJ, Wu H, Myung ST, Amine K (2011) A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries. J Mater Chem 21(27):10108–10112CrossRefGoogle Scholar
  17. 17.
    Zheng J, Han Y, Sun D, Zhang B, Cairns EJ (2017) In situ-formed LiVOPO4@V2O5 core-shell nanospheres as a cathode material for lithium-ion cells. Energy Storage Mater 7:48–55CrossRefGoogle Scholar
  18. 18.
    Zeng YW (2008) Investigation of LiNi1/3Co1/3Mn1/3O2 cathode particles after 300 discharge/charge cycling in a lithium-ion battery by analytical TEM. J Power Sources 183(1):316–324CrossRefGoogle Scholar
  19. 19.
    Han E, Du X, Yang P et al (2018) The effects of copper and titanium co-substitution on LiNi0.6Co0.15Mn0.25O2 for lithium ion batteries. Ionics 24(2):393–401CrossRefGoogle Scholar
  20. 20.
    Huang Y, Jin FM, Chen FJ, Chen L (2014) Improved cycle stability and high-rate capability of Li3VO4-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material under different voltages. J Power Sources 256:1–7CrossRefGoogle Scholar
  21. 21.
    Zheng J, Yang Z, He Z, Tong H, Yu WJ, Zhang JF (2018) In situ formed LiNi0.8Co0.15Al0.05O2@ Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy 53:613–621CrossRefGoogle Scholar
  22. 22.
    Zheng J, Yang Z, Wang P, Tang LB, An CS, He ZJ (2018) Multiple linkage modification of lithium-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for Lithium ion battery. ACS Appl Mater Interfaces 10(37):31324–31329CrossRefGoogle Scholar
  23. 23.
    Li Q, Li G, Fu C, Luo D, Fan J, Li L (2014) K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Interfaces 6(13):10330–10341CrossRefGoogle Scholar
  24. 24.
    Zheng J, Yang B, Wang X, Zhang B, Tong H, Yu WJ, Zhang JF (2018) Comparative investigation of Na2FeP2O7 sodium insertion material synthesized by using different sodium sources. ACS Sustain Chem Eng 6(4):4966–4972CrossRefGoogle Scholar
  25. 25.
    Hua W, Zhang J, Zheng Z, Liu W, Peng X, Guo XD, Zhong B, Wang YJ, Wang X (2014) Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries. Dalton Trans 43(39):14824–14832CrossRefGoogle Scholar
  26. 26.
    El Mofid W, Ivanov S, Konkin A et al (2014) A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution. J Power Sources 268:414–422CrossRefGoogle Scholar
  27. 27.
    Eilers-Rethwisch M, Winter M, Schappacher FM (2018) Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-xMx]O2 (x= 0, 0.05; M= Al, Fe, Sn) cathode materials. J Power Sources 387:101–107CrossRefGoogle Scholar
  28. 28.
    Li W, Reimers JN, Dahn JR (1993) In situ x-ray diffraction and electrochemical studies of Li1−xNiO2. Solid State Ionics 67(1–2):123–130CrossRefGoogle Scholar
  29. 29.
    Wang J, Zhang Q, Li X, Zhang B, Mai L, Zhang K (2015) Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 12:437–446CrossRefGoogle Scholar
  30. 30.
    Woo SW, Myung ST, Bang H, Kim DW, Sun YK (2009) Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta 54(15):3851–3856CrossRefGoogle Scholar
  31. 31.
    Saavedra-Arias J, Karan NK, Pradhan DK et al (2008) Synthesis and electrochemical properties of Li(Ni0.8Co0.1Mn0.1)O2 cathode material: ex situ structural analysis by Raman scattering and X-ray diffraction at various stages of charge–discharge process. J Power Sources 183(2):761–765CrossRefGoogle Scholar
  32. 32.
    Park SH, Yoon CS, Kang SG, Kim HS, Moon SI, Sun YK (2004) Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochim Acta 49(4):557–563CrossRefGoogle Scholar
  33. 33.
    Dillon AC, Mahan AH, Deshpande R, Parilla PA, Jones KM, Lee SH (2008) Metal oxide nano-particles for improved electrochromic and lithium-ion battery technologies. Thin Solid Films 516(5):794–797CrossRefGoogle Scholar
  34. 34.
    Oh SW et al (2004) Structural and electrochemical properties of layered Li[Ni0.5Mn0.5]1−xCoxO2 positive materials synthesized by ultrasonic spray pyrolysis method. Solid State Ionics 171:167–172CrossRefGoogle Scholar
  35. 35.
    Hu S-K, Chou T-C, Hwang B-J, Ceder G (2006) Effect of Co content on performance of LiAl1/3−xCoxNi1/3Mn1/3O2 compounds for lithium-ion batteries. J Power Sources 160(2):1287–1293CrossRefGoogle Scholar
  36. 36.
    Hwang BJ, Tsai YW, Chen CH, Santhanam R (2003) Influence of Mn content on the morphology and electrochemical performance of LiNi1−x−yCoxMnyO2 cathode materials. J Mater Chem 13(8):1962–1968CrossRefGoogle Scholar
  37. 37.
    Li L, Li X, Wang Z, Guo HJ, Yue P, Chen W, Wu L (2010) Synthesis, structural and electrochemical properties of LiNi0.79Co0.1Mn0.1Cr0.01O2 via fast co-precipitation. J Alloys Compd 507(1):172–177CrossRefGoogle Scholar
  38. 38.
    Sun Y-K et al (2006) Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem Commun 8(5):821–826CrossRefGoogle Scholar
  39. 39.
    Ye S, Xia Y, Zhang P, Qiao Z (2007) Al, B, and F doped LiNi1/3Co1/3Mn1/3O2 as cathode material of lithium-ion batteries. J Solid State Electrochem 11(6):805–810CrossRefGoogle Scholar
  40. 40.
    Liu L, Sun K, Zhang N, Yang T (2009) Improvement of high-voltage cycling behavior of Li(Ni1/3Co1/3Mn1/3)O2 cathodes by Mg, Cr, and Al substitution. J Solid State Electrochem 13(9):1381–1386CrossRefGoogle Scholar
  41. 41.
    Li L, Wang ZX, Liu QC, Ye C, Chen ZY, Gong L (2012) Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8−xCo0.1Mn0.1CrxO2. Electrochim Acta 77(9):89–96CrossRefGoogle Scholar
  42. 42.
    Paulsen JM, Larcher D, Dahn JR (2000) O2 structure Li2/3[Ni1/3Mn2/3]O2 a new layered cathode material for rechargeable lithium batteries. III. Ion exchange. J Electrochem Soc 147(8):2862–2867CrossRefGoogle Scholar
  43. 43.
    Du J, Shan Z, Zhu K et al (2015) Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by doping with molybdenum for Lithium battery. J Solid State Electrochem 19(4):1037–1044CrossRefGoogle Scholar
  44. 44.
    Zheng J, Kan WH, Manthiram A (2015) Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8–xCo0.1Mn0.1+xO2(0.0≤x≤0.08) cathodes for Lithium-ion batteries. ACS Appl Mater Interfaces 7(12):6926–6934CrossRefGoogle Scholar
  45. 45.
    Xu CL, Xiang W, Wu ZG, Li YC, Xu YD, Hua WB, Guo XD, Zhang XB, Zhong BH (2018) A comparative study of crystalline and amorphous Li0.5La0.5TiO3 as surface coating layers to enhance the electrochemical performance of LiNi0.815Co0.15Al0.035O2 cathode. J Alloys Compd 740:428–435CrossRefGoogle Scholar
  46. 46.
    Zhang G, Han E, Zhu L, Lu M, Chen S (2017) Synthesis and electrochemical properties of Li(Ni0.56Co0.19Mn0.24Al0.01)1-yAlyO2 as cathode material for lithium-ion batteries. Ionics 23(9):2259–2267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lamei Sun
    • 1
  • Lingzhi Zhu
    • 1
    Email author
  • Chen Mi
    • 1
  • Enshan Han
    • 1
  • Mei Shang
    • 1
  • Zhenzhen Zeng
    • 1
  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations