Advertisement

Ionics

pp 1–8 | Cite as

Defect-free soft carbon as cathode material for Al-ion batteries

  • Jia QiaoEmail author
  • Haitao Zhou
  • Zhongsheng Liu
  • Hejing Wen
  • Jianhong Yang
Original Paper
  • 8 Downloads

Abstract

Al-ion batteries are proposed as promising energy storage candidates for beyond Li-ion technology due to the higher natural earth of Al metal. Recently, various graphite and graphene cathodes for Al-ion batteries have been studied in this regard, but their costs are not satisfactory. In this study, a novel cathode for Al-ion batteries is prepared by graphitizing inexpensive soft carbon materials (mesocarbon microspheres and petroleum coke) at 2800 °C. The charge and discharge process is showcased here for graphitized petroleum coke, which has a storage capacity of 77.7 mAh g−1 with two high discharge voltage (~ 2.25 and 1.80 V), higher than graphitized mesocarbon microspheres (51 mAh g−1). It also has excellent cycle stability and no reduction in specific capacity after 1000 cycles. Affordable cost of the graphitized petroleum coke cathode makes Al-ion battery more promising for large-scale chemical energy storage.

Keywords

Al-ion battery Defect-free Cathode Petroleum coke 

Notes

Funding

This work was supported by Jiangsu University (grant number 5501670001).

References

  1. 1.
    Tarascon JM (2010) Is lithium the new gold? Nat Chem 2(6):510CrossRefGoogle Scholar
  2. 2.
    Dunn B, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935CrossRefGoogle Scholar
  3. 3.
    Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613CrossRefGoogle Scholar
  4. 4.
    Cho YJ, Park IJ, Lee HJ, Kim JG (2015) Aluminum anode for aluminum–air battery–part I: influence of aluminum purity. J Power Sources 277:370–378CrossRefGoogle Scholar
  5. 5.
    Mokhtar M, Talib MZM, Majlan EH, Tasirin SM, Wan MFWR, Wan RWD, Sahari J (2015) Recent developments in materials for aluminum–air batteries: a review. J Ind Eng Chem 32:1–20CrossRefGoogle Scholar
  6. 6.
    Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):325–328CrossRefGoogle Scholar
  7. 7.
    Hu Y, Sun D, Luo B, Wang L (2018) Recent progress and future trends of aluminum batteries. In: Energy Technol.  https://doi.org/10.1002/ente.201800550 Google Scholar
  8. 8.
    Zhang Y, Liu S, Ji Y, Ma J, Yu H (2018) Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv Mater 30(38):e1706310CrossRefGoogle Scholar
  9. 9.
    Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, Lu J, Amine K (2015) Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces 7(1):80–84CrossRefGoogle Scholar
  10. 10.
    Gu S, Wang H, Wu C, Bai Y, Li H, Wu F (2017) Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater 6:9–17CrossRefGoogle Scholar
  11. 11.
    Wang S, Jiao S, Wang J, Chen HS, Tian D, Lei H, Fang DN (2016) High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 11(1):469–477CrossRefGoogle Scholar
  12. 12.
    Kazazi M, Abdollahi P, Mirzaei-Moghadam M (2017) High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries. Solid State Ionics 300:32–37CrossRefGoogle Scholar
  13. 13.
    Choi S, Go H, Lee G, Tak Y (2017) Electrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries. Phys Chem Chem Phys 19(13):8653–8656CrossRefGoogle Scholar
  14. 14.
    Yu Z, Kang Z, Hu Z, Lu J, Zhou Z, Jiao S (2016) Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. Chem Commun (Camb) 52(68):10427–10430CrossRefGoogle Scholar
  15. 15.
    Mori T, Orikasa Y, Nakanishi K, Kezheng C, Hattori M, Ohta T, Uchimoto Y (2016) Discharge/charge reaction mechanisms of FeS 2 cathode material for aluminum rechargeable batteries at 55°C. J Power Sources 313:9–14CrossRefGoogle Scholar
  16. 16.
    Hu Y, Luo B, Ye D, Zhu X, Lyu M, Wang L (2017) An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries. Adv Mater 29(48):1606132CrossRefGoogle Scholar
  17. 17.
    Cohn G, Ma L, Archer LA (2015) A novel non-aqueous aluminum sulfur battery. J Power Sources 283:416–422CrossRefGoogle Scholar
  18. 18.
    Gao T, Li X, Wang X, Hu J, Han F, Fan X, Suo L, Pearse AJ, Lee SB, Rubloff GW, Gaskell KJ, Noked M, Wang C (2016) A rechargeable Al/S battery with an ionic-liquid electrolyte. Angew Chem Int Ed Engl 55(34):9898–9901CrossRefGoogle Scholar
  19. 19.
    Hu Y, Ye D, Luo B, Hu H, Zhu X, Wang S, Li L, Peng S, Wang L (2018) A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv Mater 30(2):1703824CrossRefGoogle Scholar
  20. 20.
    Sun H, Wang W, Yu Z, Yuan Y, Wang S, Jiao S (2015) A new aluminium-ion battery with high voltage, high safety and low cost. Chem Commun (Camb) 51(59):11892–11895CrossRefGoogle Scholar
  21. 21.
    Jiao S, Lei H, Tu J, Zhu J, Wang J, Mao X (2016) An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon 109:276–281CrossRefGoogle Scholar
  22. 22.
    Bhauriyal P, Mahata A, Pathak B (2017) The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery. Phys Chem Chem Phys 19(11):7980–7989CrossRefGoogle Scholar
  23. 23.
    Lei H, Tu J, Yu Z, Jiao S (2017) Exfoliation mechanism of graphite cathode in ionic liquids. ACS Appl Mater Interfaces 9(42):36702–36707CrossRefGoogle Scholar
  24. 24.
    Wang DY, Wei CY, Lin MC, Pan CJ, Chou HL, Chen HA, Gong M, Wu Y, Yuan C, Angell M, Hsieh YJ, Chen YH, Wen CY, Chen CW, Hwang BJ, Chen CC, Dai H (2017) Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat Commun 8:14283CrossRefGoogle Scholar
  25. 25.
    Wang S, Jiao S, Song W, Chen H, Tu J, Tian D, Jiao H, Fu C, Fang D (2018) A novel dual-graphite aluminum-ion battery. Energy Storage Mater 12:119–127CrossRefGoogle Scholar
  26. 26.
    Wei J, Chen W, Chen D, Yang K (2018) An amorphous carbon-graphite composite cathode for long cycle life rechargeable aluminum ion batteries. J Mater Sci Technol 34(6):983–989CrossRefGoogle Scholar
  27. 27.
    Walter M, Kravchyk KV, Bofer C, Widmer R, Kovalenko MV (2018) Polypyrenes as high-performance cathode materials for aluminum batteries. Adv Mater 30(15):e1705644CrossRefGoogle Scholar
  28. 28.
    Wu Y, Gong M, Lin MC, Yuan C, Angell M, Huang L, Wang DY, Zhang X, Yang J, Hwang BJ, Dai H (2016) 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv Mater 28(41):9218–9222CrossRefGoogle Scholar
  29. 29.
    Yang GY, Chen L, Jiang P, Guo ZY, Wang W, Liu ZP (2016) Fabrication of tunable 3D graphene mesh network with enhanced electrical and thermal properties for high-rate aluminum-ion battery application. RSC Adv 6(53):47655–47660CrossRefGoogle Scholar
  30. 30.
    Yu X, Wang B, Gong D, Xu Z, Lu B (2017) Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. Adv Mater 29(4).  https://doi.org/10.1002/adma.201604118
  31. 31.
    Chen H, Guo F, Liu Y, Huang T, Zheng B, Ananth N, Xu Z, Gao W, Gao C (2017) A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv Mater 29(12):1605958CrossRefGoogle Scholar
  32. 32.
    Chen H, Xu H, Wang S, Huang T, Xi J, Cai S, Guo F, Xu Z, Gao W, Gao C (2017) Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci Adv 3(12):eaao7233CrossRefGoogle Scholar
  33. 33.
    Huang X, Liu Y, Zhang H, Zhang J, Noonan O, Yu C (2017) Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode. J Mater Chem A 5(36):19416–19421CrossRefGoogle Scholar
  34. 34.
    Jung SC, Kang Y, Yoo D, Choi JW, Han Y (2016) Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery. J Phys Chem C 120(25):13384–13389CrossRefGoogle Scholar
  35. 35.
    Wang P, Chen H, Li N, Zhang X, Jiao S, Song W, Fang D (2018) Dense graphene papers: toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density. Energy Storage Mater 13:103–111CrossRefGoogle Scholar
  36. 36.
    Zafar ZA, Imtiaz S, Li R, Zhang J, Razaq R, Xin Y, Li Q, Zhang Z, Huang Y (2018) A super-long life rechargeable aluminum battery. Solid State Ionics 320:70–75CrossRefGoogle Scholar
  37. 37.
    Zhang L, Chen L, Luo H, Zhou X, Liu Z (2017) Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery. Adv Energy Mater 7(15):1700034CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jia Qiao
    • 1
    Email author
  • Haitao Zhou
    • 2
  • Zhongsheng Liu
    • 2
  • Hejing Wen
    • 2
  • Jianhong Yang
    • 1
    • 2
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations