Advertisement

Ionics

pp 1–13 | Cite as

Enhanced electrochemical performance of lithium–sulphur battery by negating polysulphide shuttling and interfacial resistance through aluminium nanolayer deposition on a polypropylene separator

  • Mir Mehraj Ud Din
  • Binaya Kumar Sahu
  • Arindam Das
  • Ramaswamy MuruganEmail author
Original Paper
  • 28 Downloads

Abstract

Shuttling of lithium polysulphides and the formation of lithium dendrites are the key challenges that impede the commercialization of high-capacity lithium–sulphur batteries. Here, we report on a binder-free novel aluminium nanolayer–coated polypropylene separator prepared by radio frequency magnetron sputtering technique for shuttle-free lithium metal battery applications. A symmetric cell with a modified separator exhibits smooth lithium striping and plating cycles at higher current density under room temperature conditions for an extended time period of 1550 h, suggesting better safety and protection of lithium anode from dendrite formation. Coin cells assembled with sulphurized cathode and Li metal as anode in a liquid electrolyte medium using a surface-modified separator display significantly improved specific initial discharge capacity with reasonable reversible discharge capacity and high Coulombic efficiency after 100 galvanostatic cycles at a cycling rate of 0.1 C. This result suggests that the aluminium nanolayer–coated separator can effectively help in reduction of polysulphide crossover during the electrochemical process.

Keywords

Surface-modified separator Polysulfide shuttle inhibitor Composite sulphur cathode High-capacity Li–S battery 

Notes

Acknowledgements

RM acknowledges the SERB, Govt. of India, for support (EMR/2017/000417). MMU Din thanks UGC–MANF, Govt. of India, for financial assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

11581_2019_2891_MOESM1_ESM.doc (1 mb)
ESM 1 (DOC 1062 kb)

References

  1. 1.
    Yang L, Ravdel B, Lucht BL (2010) Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem Solid-State Lett 13:95–97.  https://doi.org/10.1149/1.3428515 Google Scholar
  2. 2.
    See KA, Jun Y–S, Gerbec JA, Sprafke JK, Wudl F, Stucky GD, Seshadri R. (2014) Sulfur-functionalized mesoporous carbons as sulfur hosts in Li–S batteries: increasing the affinity of polysulphide intermediates to enhance performance. ACS Appl Mater Interfaces 6:10908–10916.  https://doi.org/10.1021/am405025n
  3. 3.
    Pang Q, Kundu D, Cuisinier M, Nazar LF (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulfur batteries. Nat Commun 5:4759.  https://doi.org/10.1038/ncomms5759 Google Scholar
  4. 4.
    Manthiram A, Fu Y, Su YS (2012) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46:1125–1134.  https://doi.org/10.1021/ar300179v Google Scholar
  5. 5.
    Manthiram A, Fu Y, Chung S–H, Zu C, Su Y–S. (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114:11751–11787.  https://doi.org/10.1021/cr500062v
  6. 6.
    Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1:2204–2219.  https://doi.org/10.1021/jz100553m Google Scholar
  7. 7.
    Shim J, Striebel KA, Cairns EJ (2002) The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance. J Electrochem Soc 149:1321–1325.  https://doi.org/10.1149/1.1503076 Google Scholar
  8. 8.
    Liu J, Galpaya DG, Yan L, Sun M, Lin Z, Yan C, Liang C, Zhang S (2017) Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery. Energy Environ Sci 10:750–755.  https://doi.org/10.1039/C6EE03033E Google Scholar
  9. 9.
    Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126:523–527.  https://doi.org/10.1149/1.2129079 Google Scholar
  10. 10.
    Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E (1988) Lithium sulfur battery oxidation/reduction mechanisms of polysulfides in THF solutions. J Electrochem Soc 135:1045–1048.  https://doi.org/10.1149/1.2095868 Google Scholar
  11. 11.
    Yu S–H, Huang X, Schwarz K, Huang R, Arias TA, Brock JD, Abruña HD. (2018) Direct visualization of sulfur cathodes: new insights into Li–S batteries via operando X-ray based methods. Energy Environ Sci 11:202–210.  https://doi.org/10.1149/1.2095868
  12. 12.
    Cheon S–E, Ko K–S, Cho J–H, Kim S–W, Chin E–Y, Kim H–T. (2003) Rechargeable lithium sulfur battery 1. Structural change of sulfur cathode during discharge and charge. J Electrochem Soc 150:796–805.  https://doi.org/10.1149/1.1571532
  13. 13.
    Mikhaylik YV, Akridge JR (2004) Polysulphide shuttle study in Li/S battery system. J Electrochem Soc 151:1969–1976.  https://doi.org/10.1149/1.1806394 Google Scholar
  14. 14.
    Evers S, Nazar LF (2012) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46:1135–1143.  https://doi.org/10.1021/ar3001348 Google Scholar
  15. 15.
    Yang Y, Zheng GY, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032.  https://doi.org/10.1039/C2CS35256G Google Scholar
  16. 16.
    Wang D–W, Zeng Q, Zhou G, Yin L, Li F, Cheng H–M, Gentle I–R, Lu GQM (2013) Carbon–sulfur composites for Li–S batteries: status and prospects. J Mater Chem A 1:9382–9394.  https://doi.org/10.1039/C3TA11045A Google Scholar
  17. 17.
    Hu G, Xu C, Sun Z, Wang S, Cheng H–M, Li F, Ren W. (2016) 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li–S batteries. Adv Mater 28:1603–1609.  https://doi.org/10.1002/adma.201504765
  18. 18.
    Yuan Z, Peng H–J, Huang J–Q, Liu X–Y, Wang D–W, Cheng X–B, Zhang Q. (2014) Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv Funct Mater 24:6105–6112.  https://doi.org/10.1002/adfm.201401501
  19. 19.
    Zhou G, Li L, Ma C, Wang S, Shi Y, Koratkar N, Ren W, Li F, Cheng H–M. (2015) A graphene foam electrode with high sulfur loading for flexible and high energy Li–S batteries. Nano Energy 11:356–365.  https://doi.org/10.1016/j.nanoen.2014.11.025 Google Scholar
  20. 20.
    Qie L, Manthiram A (2015) A facile layer-by-layer approach for high-areal-capacity sulfur cathodes. Adv Mater 27:1694–1700.  https://doi.org/10.1002/adma.201405689 Google Scholar
  21. 21.
    Lu S, Chen Y, Wu X, Wang Z, Li Y (2014) Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium–sulfur batteries with large areal mass loading. Sci Rep 4:4629.  https://doi.org/10.1038/srep04629 Google Scholar
  22. 22.
    Li Z, Zhang JT, Chen YM, Li J, Lou XW (2015) Pie-like electrode design for high-energy density lithium–sulfur batteries. Nat Commun 6:8850.  https://doi.org/10.1038/ncomms9850 Google Scholar
  23. 23.
    Cheng X–B, Huang J–Q, Zhang Q, Peng H-J, Zhao Q–M, Wei F. (2014) Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy 4:65–72.  https://doi.org/10.1016/j.nanoen.2013.12.013
  24. 24.
    Miao LX, Wang WK, Yuan KG, Yang YS, Wang AB (2014) A lithium sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth–sulfur material. Chem Commun 50:13231–13234.  https://doi.org/10.1039/C4CC03410D Google Scholar
  25. 25.
    Du W–C, Yin Y–X, Zeng X–X, Shi J–L, Zhang S–F, Wan L–J, Guo YG (2015) Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium–sulfur batteries. ACS Appl Mater Interfaces 8:3584–3590.  https://doi.org/10.1021/acsami.5b07468 Google Scholar
  26. 26.
    Fang R, Zhao S, Hou P, Cheng M, Wang S, Cheng H–M, Liu C, Li F. (2016) 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv Mater 28:3374–3382.  https://doi.org/10.1002/adma.201506014
  27. 27.
    Wei S, Ma L, Hendrickson KE, Tu Z, Archer L (2015) A. Metal–sulfur battery cathodes based on PAN–sulfur composites. J Am Chem Soc 137:12143–12152.  https://doi.org/10.1021/jacs.5b08113 Google Scholar
  28. 28.
    Shanthi PM, Hanumantha PJ, Albuquerque T, Gattu B, Kumta PN (2018) Novel composite polymer electrolytes of PVDF-HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium–sulfur batteries. ACS Appl Energy Mater 1:483–494.  https://doi.org/10.1021/acsaem.7b00094 Google Scholar
  29. 29.
    Li D, Chen L, Wang T, Fan L–Z. (2018) 3D fiber-network-reinforced bi-continuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl Mater Interfaces 10:7069–7078.  https://doi.org/10.1021/acsami.7b18123 Google Scholar
  30. 30.
    Zhang Z, Lai Y, Zhang Z, Zhang K, Li J (2014) Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 129:55–61.  https://doi.org/10.1016/j.electacta.2014.02.077 Google Scholar
  31. 31.
    Jiang X, Zhu X, Ai X, Yang H, Cao Y (2017) Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl Mater Interfaces 2017(9):25970–25975.  https://doi.org/10.1021/acsami.7b05535 Google Scholar
  32. 32.
    Zhang SS, Tran DT (2014) A simple approach for superior performance of lithium/sulfur batteries modified with a gel polymer electrolyte. J Mater Chem A 2:7383–7388.  https://doi.org/10.1039/C4TA00597J Google Scholar
  33. 33.
    Machida N, Kobayashi K, Nishikawa Y, Shigematsu T (2004) Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes. Solid State Ionics 175:247–250.  https://doi.org/10.1016/j.ssi.2003.11.033 Google Scholar
  34. 34.
    Nagao M, Hayashi A, Tatsumisago M (2012) High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. J Mater Chem 22:10015–10020.  https://doi.org/10.1039/C2JM16802B Google Scholar
  35. 35.
    Lee T, Kim WK, Lee Y, Ryou MH, Yong ML (2014) Effect of Al2O3 coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries. Macromol Res 22:1190–1195.  https://doi.org/10.1007/s13233-014-2163-1 Google Scholar
  36. 36.
    Wen K, Liu L, Chen S, Zhang S (2018) A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator. RSC Adv 8:13034–13039.  https://doi.org/10.1039/C8RA02140F Google Scholar
  37. 37.
    Peng K, Wang B, Li Y, Ji C (2015) Magnetron sputtering deposition of TiO2 particles on polypropylene separators for lithium-ion batteries. RSC Adv 5:81468–81473.  https://doi.org/10.1039/C5RA18171B Google Scholar
  38. 38.
    Wang Q, Jin J, Wu X, Ma G, Yang J, Wen Z (2014) A shuttle effect free lithium sulfur battery based on a hybrid electrolyte. Phys Chem Chem Phys 16:21225–21229.  https://doi.org/10.1039/C4CP03694H Google Scholar
  39. 39.
    Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11:4288–4294.  https://doi.org/10.1021/nl202297p Google Scholar
  40. 40.
    Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647.  https://doi.org/10.1021/nl200658a
  41. 41.
    Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@ sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed 50:5904–5908.  https://doi.org/10.1002/anie.201100637 Google Scholar
  42. 42.
    Zhou W, Yu Y, Chen H, DiSalvo FJ, Abruña HD. (2013) Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J Am Chem Soc 135: 16736–16743.  https://doi.org/10.1021/ja409508q
  43. 43.
    Hagen M, Quiroga-González E, Dörfler S, Fahrer G, Tübke J, Hoffmann MJ, Althues H, Speck R, Krampfert M, Kaskel S, Föll H (2014) Studies on preventing Li dendrite formation in Li–S batteries by using pre-lithiated Si microwire anodes. J Power Sources 248:1058–1066.  https://doi.org/10.1016/j.jpowsour.2013.09.144 Google Scholar
  44. 44.
    Zhou SP, Lu Y, Shen S, Zhang SJ, Zhou XD, Li JT, Huang L, Sun SG (2018) Aluminium-sulfur composites for Li-S batteries with high-rate performance. Compos Part B.  https://doi.org/10.1016/j.compositesb.2018.09.079
  45. 45.
    Chen MF, Jiang SX, Huang C, Wang XY, Cai SY, Xiang KX, Zhang YP, Xue JX (2017) Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium–sulfur batteries. ChemSusChem 10:1803–1812.  https://doi.org/10.1002/cssc.201700050 Google Scholar
  46. 46.
    Ma G, Huang F, Wen Z, Wang Q, Hong X, Jin J, Wu X (2016) Enhanced performance of lithium sulfur batteries with conductive polymer modified separators. J Mater Chem A 4:16968–16974  https://doi.org/10.1039/C6TA07198H Google Scholar
  47. 47.
    Tan L, Li X, Wang Z, Guo H, Wang J, An L (2018) Multifunctional separator with porous carbon/multi-walled carbon nanotube coating for advanced lithium–sulfur batteries. ChemElectroChem 1:71–77.  https://doi.org/10.1002/celc.201700986 Google Scholar
  48. 48.
    Kim MS, Ma L, Choudhury S, Archer LA (2016) Multifunctional separator coatings for high-performance lithium–sulfur batteries. Adv Mater Interfaces 3:1600450.  https://doi.org/10.1002/admi.201600450 Google Scholar
  49. 49.
    Su Y–S, Manthiram A. (2012) Lithium–sulfur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166.  https://doi.org/10.1038/ncomms2163
  50. 50.
    Oh C, Yoon N, Choi J, Choi Y, Ahn S, Lee JK (2017) Enhanced Li–S battery performance based on solution-impregnation-assisted sulfur/mesoporous carbon cathodes and a carbon-coated separator. J Mater Chem A 5:5750–5760.  https://doi.org/10.1039/C7TA01161J Google Scholar
  51. 51.
    Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115:6057–6063.  https://doi.org/10.1021/jp1114724 Google Scholar
  52. 52.
    Stoeck U, Balach J, Klose M, Wadewitz D, Ahrens E, Eckert J, Giebeler L (2016) Reconfiguration of lithium sulfur batteries: “enhancement of Li–S cell performance by employing a highly porous conductive separator coating”. J Power Sources 309:76–81.  https://doi.org/10.1016/j.jpowsour.2015.11.077 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mir Mehraj Ud Din
    • 1
  • Binaya Kumar Sahu
    • 2
  • Arindam Das
    • 2
  • Ramaswamy Murugan
    • 1
    Email author
  1. 1.High Energy Density Batteries Research Laboratory, Department of PhysicsPondicherry UniversityPuducherryIndia
  2. 2.Surface and Nanoscience Division, Materials Science GroupIndira Gandhi Centre for Atomic Research, Homi Bhabha National InstituteKalpakkamIndia

Personalised recommendations