Advertisement

Ionics

pp 1–10 | Cite as

Co3O4 and Co(OH)2 loaded graphene on Ni foam for high-performance supercapacitor electrode

  • Rui Miao
  • Bairui TaoEmail author
  • Fengjuan MiaoEmail author
  • Yu Zang
  • Cuiping Shi
  • Lei Zhu
  • Paul K. Chu
Original Paper

Abstract

Electrode materials with high conductivity and excellent redox characteristics are vital to supercapacitors in electrochemical energy storage. Herein, a graphene/Co3O4/Co(OH)2/Ni electrode synthesized hydrothermally has high specific capacitance and the morphology and structure of the graphene/Co3O4/Co(OH)2/Ni electrodes are characterized systematically. The three electrode charge–discharge test exhibits an excellent specific capacitance of 3216 F g−1 at 5 A g−1. The two electrode charge–discharge capacitance decreases from an initial value of 195 to 140 F g−1 after 5000 cycles showing capacitance retention of 71.1%. A test device is fabricated with (OH)2/Co3O4/graphene/Ni as the positive electrode and carbon/nickel foam as the negative electrode. After charging for 15 s, two such devices in series can efficiently power five 5-mm-diameter light-emitting diodes (LEDs) and the excellent electrochemical performance reveals large potential in next-generation high-performance supercapacitors.

Keywords

Electrochemical supercapacitor Nickel hydroxide Co3O4 Co(OH)2 Graphene 

Notes

Acknowledgements

This work was jointly supported by the Higher School Science and Technology Achievements Industrialization Pre-Research and Development Foundation of Heilongjiang Province (grant no. 1254CGZH04), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (grant no. UNPYSCT-2016087), Scientific Research Foundation for the Returned Overseas Chinese Scholars in Heilongjiang Province, Graduate Innovation Project of Qiqihar University (grant no. YJSCX2018-ZD15), Project of Plant Food Processing Technology–Heilongjiang Province superiority and characteristic discipline (grant no. YSTSXK201873), Fundamental Research Funds in Heilongjiang Provincial Universities (nos. 135109244, 135309115, 135309211), Hong Kong Research Grants Council (RGC) General Research Funds (GRF) nos. City U 11301215 and 11205617, as well as City University of Hong Kong Strategic Research Grant (SRG) no. 7005105.

References

  1. 1.
    Rezaei B, Jahromi ART, Ensafi AA (2017) Co(OH)2 nanoparticles deposited on reduced graphene oxide nanoflake as a suitable electrode material for supercapacitor and oxygen evolution reaction in alkaline media. Int J Hydrog Energy 42(26):16538–16546CrossRefGoogle Scholar
  2. 2.
    Sawangphruk M, Srimuk P, Chiochan P, Krittayavathananon A, Luanwuthi S, Limtrakul J (2013) High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60:109–116CrossRefGoogle Scholar
  3. 3.
    Zhang L, Li T, Ji X, Zhang Z, Yang W, Gao J, Dang A (2017) Freestanding three-dimensional reduced graphene oxide/MnO2 on porous carbon/nickel foam as a designed hierarchical multihole supercapacitor electrode. Electrochim Acta 252:306–314CrossRefGoogle Scholar
  4. 4.
    Wang B, Qin Y, Tan W, Tao YK (2017) Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes. Electrochim Acta 241:1–9CrossRefGoogle Scholar
  5. 5.
    Wu D, Xu S, Zhang C, Zhu Y, Xiong D, Huang R, Chu PK (2016) Three-dimensional homo-nanostructured MnO2/nanographene membranes on a macroporous electrically conductive network for high performance supercapacitors. J Mater Chem A 4(29):11317–11329CrossRefGoogle Scholar
  6. 6.
    Samal R, Dash B, Sarangi C, Sanjay K, Subbaiah T, Senanayake G, Minakshi M (2017) Influence of synthesis temperature on the growth and surface morphology of Co3O4 nanocubes for supercapacitor applications. Nano 7(11):356Google Scholar
  7. 7.
    Bao L, Li T, Chen S, Peng C, Li L, Xu Q, Xu W (2017) 3D Graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13(5):1602077CrossRefGoogle Scholar
  8. 8.
    Mei J, Fu W, Zhang Z, Jiang X, Bu H, Jiang C, Han W (2017) Vertically-aligned Co3O4 nanowires interconnected with Co(OH)2 nanosheets as supercapacitor electrode. Energy 139:1153–1158CrossRefGoogle Scholar
  9. 9.
    Wu N, Low J, Liu T, Yu J, Cao S (2017) Hierarchical hollow cages of Mn–Co layered double hydroxide as supercapacitor electrode materials. Appl Surf Sci 413:35–40CrossRefGoogle Scholar
  10. 10.
    Li Y, Wang X, Yang Q, Javed MS, Liu Q, Xu W, Wei X (2017) Ultra-fine CuO nanoparticles embedded in three-dimensional graphene network nano-structure for high-performance flexible supercapacitors. Electrochim Acta 234:63–70CrossRefGoogle Scholar
  11. 11.
    Kim DK, Hwang M, Ko D, Kang J, Seong K (2017) Piao, Electrochemical performance of 3D porous Ni-Co oxide with electrochemically exfoliated graphene for asymmetric supercapacitor applications. Electrochim Acta 246:680–688CrossRefGoogle Scholar
  12. 12.
    Chi F, Li C, Zhou Q, Zhang M, Chen J, Yu X, Shi G (2017) Graphene-based organic electrochemical capacitors for AC line filtering. Adv Energy Mater 7:170059119CrossRefGoogle Scholar
  13. 13.
    Ding K, Zhang X, Li J, Yang P, Cheng X (2017) Phase and morphology evolution of ultrathin Co(OH)2 nanosheets towards supercapacitor application. CrystEngComm 19(38):5780–5786CrossRefGoogle Scholar
  14. 14.
    Zhao C, Ren F, Xue X, Zheng W, Wang X, Chang L (2016) A high-performance asymmetric supercapacitor based on Co(OH)2/graphene and activated carbon electrodes. J Electroanal Chem 782:98–102CrossRefGoogle Scholar
  15. 15.
    Li M, Xu S, Cherry C, Zhu Y, Wu D, Zhang C, Chu PK (2015) Hierarchical 3-dimensional CoMoO4 nanoflakes on a macroporous electrically conductive network with superior electrochemical performance. J Mater Chem A 3(26):13776–13785CrossRefGoogle Scholar
  16. 16.
    Wu D, Xu S, Li M, Zhang C, Zhu Y, Xu Y, Chu PK (2015) Hybrid MnO2/C nano-composites on a macroporous electrically conductive network for supercapacitor electrodes. J Mater Chem A 3(32):16695–16707CrossRefGoogle Scholar
  17. 17.
    Feng M, Zhang G, Du Q, Su L, Ma Z, Qin X, Shao G (2017) Co3O4@MnO2 core shell arrays on nickel foam with excellent electrochemical performance for aqueous asymmetric supercapacitor. Ionics 23(7):1637–1643CrossRefGoogle Scholar
  18. 18.
    Tong X, Wu D, Zhang C, Lian K, Xiong D, Xu S, Chu PK (2017) Three-dimensional tetsubo-like Co(OH)2 nanorods on a macroporous electrically conductive network as an efficient electroactive framework for the hydrogen evolution reaction. J Mater Chem A 5(6):2629–2639CrossRefGoogle Scholar
  19. 19.
    Sun Z, Song W, Zhao G, Wang H (2017) Chitosan-based polymer gel paper actuators coated with multi-wall carbon nanotubes and MnO2 composite electrode. CELLULOSE 24(10):4383–4392CrossRefGoogle Scholar
  20. 20.
    Sun Z, Li F, Zhang D, Song W (2018) High-performance all-gel-state nano-biopolymer artificial muscles enabled by macromolecularly interconnected conductive microporous chitosan and graphene loaded carbon nanosheet based ionic electrolyte membrane. J Electrochem Soc 165(13):H820–H830CrossRefGoogle Scholar
  21. 21.
    Cao Z, Mao H, Guo X, Sun D, Sun Z, Wang B, Zhang Y, Song XM (2018) Hierarchical Ni (OH)(2)/polypyrrole/graphene oxide nanosheets as excellent electrocatalysts for the oxidation of urea. ACS Sustain Chem Eng 6(11):15570–15581CrossRefGoogle Scholar
  22. 22.
    Yan Y, Li B, Guo W, Pang H, Xue H (2016) Vanadium based materials as electrode materials for high performance supercapacitors. J Power Sources 329:148–169CrossRefGoogle Scholar
  23. 23.
    Yan Y, Gu P, Zheng S, Zheng M, Pang H, Xue H (2016) Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A 4(48):19078–19085CrossRefGoogle Scholar
  24. 24.
    Yan Y, Xu H, Guo W, Huang Q, Zheng M, Pang H, Xue H (2016) Facile synthesis of amorphous aluminum vanadate hierarchical microspheres for supercapacitors. Inorg Chem Front 3(6):791–797CrossRefGoogle Scholar
  25. 25.
    Yan Y et al (2018) Facile synthesis of vanadium metal-organic frameworks for high-performance supercapacitors. SMALL 14:180181533Google Scholar
  26. 26.
    Xu J, Wang Y, Cao S et al (2018) Ultrathin Cu-MOF@delta-MnO2 nanosheets for aqueous electrolyte-based high-voltage electrochemical capacitors [J]. J Mater Chem A 6(36):17329–17336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Communications and Electronics EngineeringQiqihar UniversityHeilongjiangChina
  2. 2.College of Materials Science and EngineeringQiqihar UniversityQiqiharChina
  3. 3.Department of Physics and Department of Materials Science and EngineeringCity University of Hong KongKowloonChina

Personalised recommendations