, Volume 25, Issue 7, pp 3387–3396 | Cite as

(SiO2)100-x-Nix (x = 2.5, 10.0) Composite-based photoanode with polymer gel electrolyte for increased dye-sensitized solar cell performance

  • Huda AbdullahEmail author
  • Mohammad Khairusani Zainudin
  • Masrianis Ahmad
  • Savisha Mahalingam
  • Abreeza Manap
Original Paper


This work aims on the degradation performance of (SiO2)100-x-Nix (x = 2.5, 10.0) photoanodes incorporating with liquid and gel polymer electrolyte for dye-sensitized solar cell (DSSC). The silica doped with nickel and gel polymer electrolyte was prepared by sol-gel polymerization of tetraethyl orthosilicate and sol-gel polymerization of polyacrylonitrile (PAN), respectively. The utilization of PAN-based gel polymer electrolyte improved the value of open circuit voltage due to its high ionic conductivity and mechanical stability in DSSC. The (SiO2)90.0-Ni10.0-based DSSC utilizing PAN-based gel polymer electrolyte exhibited the highest power conversion efficiency of 2.96%. The field emission electron microscopy images show larger average particle size with greater porosity in the (SiO2)90.0-Ni10.0 thin film. Moreover, the Brunauer-Emmett-Teller analysis determines greater active surface area on (SiO2)90.0-Ni10.0 thin films that indicates more dye molecules may adsorb on the mesoporous photoanode to facilitate electron transport in the DSSC.


Dye-sensitized solar cells (DSSCs) Sol-gel Gel polymer electrolyte Silica Nickel 



This work was supported by Project No.: UKM-DIP-2016-021and Photonic Technology Laboratory (IMEN), Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.


  1. 1.
    Ciani L, Catelani M, Carnevale EA, Donati L, Bruzzi M (2015) Evaluation of the aging process of dye sensitized solar cell under different stress conditions. IEEE Trans Instrum Meas 64:1179–1187CrossRefGoogle Scholar
  2. 2.
    Mahalingam S, Abdullah H (2016) Electron transport study of indium oxide as photoanode in DSSCs: a review. Renew Sustain Energy Rev 63:245–255CrossRefGoogle Scholar
  3. 3.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  4. 4.
    Mahalingam S, Abdullah H, Shaari S, Muchtar A (2016) Improved catalytic activity of Pt/rGO counter electrode in In2O3-based DSSC. Ionics 22:2487–2497CrossRefGoogle Scholar
  5. 5.
    Mahalingam S, Abdullah H, Ashaari I, Shaari S, Muchtar A (2016) Influence of heat treatment process in In2O3-MWCNTs as photoanode in DSSCs. Ionics 22:711–719CrossRefGoogle Scholar
  6. 6.
    Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333CrossRefGoogle Scholar
  7. 7.
    Abdullah H, Atiqah NA, Omar A, Asshaari I, Mahalingam S, Razali Z, Shaari S, Mandeep JS, Misran H (2015) Structural, morphological, electrical and electron transport studies in ZnO–rGO (wt%= 0.01, 0.05 and 0.1) based dye-sensitized solar cell. J Mater Sci Mater Electron 26:2263–2270CrossRefGoogle Scholar
  8. 8.
    Mahalingam S, Abdullah H, Omar A, Nawi NAM, Shaari S, Muchtar A, Asshari I (2015) Effect of morphology on SnO2/MWCNT-based DSSC performance with various annealing temperatures. Adv Mater Res 1107:649CrossRefGoogle Scholar
  9. 9.
    Mahalingam S, Abdullah H, Ashaari I, Shaari S, Muchtar A (2016) Optical, morphology and electrical properties of In2O3 incorporating acid-treated single-walled carbon nanotubes based DSSC. J Phys D Appl Phys 49:075601CrossRefGoogle Scholar
  10. 10.
    Son S, Hwang SH, Kim C, Yun JY, Jang J (2013) Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 5:4815–4820CrossRefGoogle Scholar
  11. 11.
    Shin YJ, Lee JH, Park JH, Park NG (2007) Enhanced photovoltaic properties of SiO2-treated ZnO nanocrystalline electrode for dye-sensitized solar cell. Chem Lett 36:1506–1507CrossRefGoogle Scholar
  12. 12.
    Li GR, Song J, Pan GL, Gao XP (2011) Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy Environ Sci 4:1680–1683CrossRefGoogle Scholar
  13. 13.
    Yang CH, Ho WY, Yang HH, Hsueh ML (2010) Approaches to gel electrolytes in dye-sensitized solar cells using pyridinium molten salts. J Mater Chem 20(29):6080–6085CrossRefGoogle Scholar
  14. 14.
    Dissanayake MA, Bandara LR, Bokalawala RS, Jayathilaka PA, Ileperuma OA, Somasundaram S (2002) A novel gel polymer electrolyte based on polyacrylonitrile (PAN) and its application in a solar cell. Mater Res Bull 37:867–874CrossRefGoogle Scholar
  15. 15.
    Arof AK, Aziz MF, Noor MM, Careem MA, Bandara LR, Thotawatthage CA, Rupasinghe WN, Dissanayake MA (2014) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte. Int J Hydrog Energy 39:2929–2935CrossRefGoogle Scholar
  16. 16.
    Careem MA, Aziz MF, Buraidah MH (2017) Boosting efficiencies of gel polymer electrolyte based dye sensitized solar cells using mixed cations. Mater Today: Proc 4(4):5092–5099Google Scholar
  17. 17.
    Bandara TMWJ, Jayasundara WJMJSR, Dissanayake MAKL, Furlani M, Albinsson I, Mellander BE (2013) Effect of cation size on the performance of dye sensitized nanocrystalline TiO2 solar cells based on quasi-solid state PAN electrolytes containing quaternary ammonium iodides. Electrochim Acta 109:609–616CrossRefGoogle Scholar
  18. 18.
    Ahmad M, Abdullah H, Yuliarto B (2018) Effect of nickel in TiO 2-SiO 2-GO-based DSSC by using a sol-gel method. Ionics 6:1Google Scholar
  19. 19.
    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N et al (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247CrossRefGoogle Scholar
  20. 20.
    Mahalingam S, Abdullah H, Razali MZ, Yarmo MA, Shaari S, Omar A (2016) Structural, morphological, photovoltaic and electron transport properties of ZnO based DSSC with different concentrations of MWCNTs. Mater Sci Forum 846:2016CrossRefGoogle Scholar
  21. 21.
    Wen P, Han Y, Zhao W (2012) Influence of TiO2 nanocrystals fabricating dye-sensitized solar cell on the absorping spectra of N719 sensitizer. Int J Photoenergy 2012.
  22. 22.
    Bisquert J, Zaban A, Greenshtein M, Seró IM (2004) Determination of rate constants for charge transfer and distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am Chem Soc 126:13550–13559CrossRefGoogle Scholar
  23. 23.
    Mahalingam S, Abdullah H, Shaari S, Muchtar A (2016) Morphological and electron mobility studies in nanograss In2O3 DSSC incorporating multi-walled carbon nanotubes. Ionics 22:1985–1997CrossRefGoogle Scholar
  24. 24.
    Mahalingam S, Abdullah H, Manap A (2018) Role of acid-treated CNTs in chemical and electrochemical impedance study of dye-sensitised solar cell. Electrochim Acta 264:275–283CrossRefGoogle Scholar
  25. 25.
    Mahalingam S, Abdullah H, Amin N, Manap A Incident photon-to-current efficiency of thermally treated SWCNTs-based nanocomposite for dye-sensitized solar cell. Ionics 1–5.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Huda Abdullah
    • 1
    Email author
  • Mohammad Khairusani Zainudin
    • 1
  • Masrianis Ahmad
    • 1
  • Savisha Mahalingam
    • 2
  • Abreeza Manap
    • 2
  1. 1.Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Institute of Sustainable EnergyUniversiti Tenaga NasionalKajangMalaysia

Personalised recommendations