, Volume 25, Issue 7, pp 3341–3349 | Cite as

Controllably fabricating carbon microspheres with hierarchical porous structure for supercapacitors

  • Jianguo YuEmail author
  • Yao Li
  • Yuning QuEmail author
  • Honghui Shen
  • Wenjie Yu
  • Young-Uk Kwon
  • Yongnan Zhao
Original Paper


The porous carbon microspheres (PCS) with hierarchical pore structure were fabricated by annealing the mixtures of aluminum potassium sulfate, calcium carbonate, and corn starch in a tube furnace in N2 atmospheres. The mechanisms of forming carbon microspheres and producing the hierarchical pore structures were explored. The result shows that formation of carbon spheres depends on the pretreated starch by KAl (SO4)2, and CaCO3 can promote more mesoporous structure produced. The resulting PCS-Ca1 electrode exhibits a high capacitance of 300 F g−1 at a current density of 0.5 A g−1, a superior rate capability of 228 F g−1 at 20 A g−1, and almost no capacitance fading (only 0.6% loss after 10,000 cycles) in 6 mol L−1 KOH electrolyte. The symmetric supercapacitor fabricated with PCS-Ca1 electrodes displays a high energy density of 8.54 Wh kg−1 at a power density of 125 W kg−1 in 6 mol L−1 KOH electrolyte.


Carbon microspheres KAl (SO4)2 Controllable synthesis Supercapacitor 


Funding information

This work was financially supported by the Natural Science Foundations of China (no. 21703152), State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University (no. 17JCQNJC06100), and Science and Technology Correspondent Project of Tianjin (nos. 17JCTPJC47300 and 18JCTPJC61300).

Supplementary material

11581_2019_2885_MOESM1_ESM.pdf (389 kb)
ESM 1 (PDF 388 kb)


  1. 1.
    Oh T, Kim M, Choi J, Kim J (2018) Design of graphitic carbon nitride nanowires with captured mesoporous carbon spheres for EDLC electrode materials. Ionics 24:3957–3965CrossRefGoogle Scholar
  2. 2.
    Wang D, Chen Y, Wang H, Zhao P, Liu W, Wang Y, Yang J (2018) N-doped porous carbon anchoring on carbon nanotubes derived from ZIF-8/polypyrrole nanotubes for superior supercapacitor electrodes. Appl Surf Sci 457:1018–1024CrossRefGoogle Scholar
  3. 3.
    Wang J, Chang J, Wang L, Hao J (2018) One-step and low-temperature synthesis of CoMoO4 nanowire arrays on Ni foam for asymmetric supercapacitors. Ionics 24:3967–3973CrossRefGoogle Scholar
  4. 4.
    Jiang L, Yuan X, Liang J, Zhang J, Wang H, Zeng G (2016) Nanostructured core-shell electrode materials for electrochemical capacitors. J Power Sources 331:408–425CrossRefGoogle Scholar
  5. 5.
    Kim C, Ngoc BTN, Yang KS, Kojima M, Kim YA, Kim YJ, Endo M, Yang SC (2007) Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride. Adv Mater 19:2341–2346CrossRefGoogle Scholar
  6. 6.
    Atchudan R, Edison TNJI, Perumal S, Lee YR (2017) Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications. Appl Surf Sci 393:276–286CrossRefGoogle Scholar
  7. 7.
    Xu X, Liu Y, Wang M, Zhu C, Lu T, Zhao R, Pan L (2016) Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochim Acta 193:88–95CrossRefGoogle Scholar
  8. 8.
    Pang J, Zhang W, Zhang H, Zhang J, Zhang H, Cao G, Han M, Yang Y (2018) Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon 132:280–293CrossRefGoogle Scholar
  9. 9.
    Wang H, Zhou H, Gao M, Zhu Y-a, Liu H, Gao L, Wu M (2019) Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes. Electrochim Acta 298:552–560Google Scholar
  10. 10.
    Liu S, Cai Y, Zhao X, Liang Y, Zheng M, Hu H, Dong H, Jiang S, Liu Y, Xiao Y (2017) Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor. J Power Sources 360:373–382CrossRefGoogle Scholar
  11. 11.
    Zhu D, Wang Y, Gan L, Liu M, Cheng K, Zhao Y, Deng X, Sun D (2015) Nitrogen-containing carbon microspheres for supercapacitor electrodes. Electrochim Acta 158:166–174CrossRefGoogle Scholar
  12. 12.
    Liu M, Qian J, Zhao Y, Zhu D, Gan L, Chen L (2015) Core–shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes. J Mater Chem 3:11517–11526CrossRefGoogle Scholar
  13. 13.
    Wang G, Zhang J, Kuang S, Zhou J, Xing W, Zhuo S (2015) Nitrogen-doped hierarchical porous carbon as an efficient electrode material for supercapacitors. Electrochim Acta 153:273–279CrossRefGoogle Scholar
  14. 14.
    Zhang X, Li Y, Cao C (2012) Facile one-pot synthesis of mesoporous hierarchically structured silica/carbon nanomaterials. J Mater Chem 22:13918–13921CrossRefGoogle Scholar
  15. 15.
    Falco C, Sieben JM, Brun N, Sevilla M, Morallón E, Cazorla-Amorós D, Titirici MM (2013) Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. ChemSusChem 6:374–382CrossRefGoogle Scholar
  16. 16.
    Yu X, Lu J, Zhan C, Lv R, Liang Q, Huang ZH, Shen W, Kang F (2015) Synthesis of activated carbon nanospheres with hierarchical porous structure for high volumetric performance supercapacitors. Electrochim Acta 182:908–916CrossRefGoogle Scholar
  17. 17.
    Chen X, Kierzek K, Jiang Z, Chen H, Tang T, Wojtoniszak M, Kalenczuk RJ, Chu PK, Borowiakpalen E (2011) Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter. J Phys Chem C 115:17717–17724CrossRefGoogle Scholar
  18. 18.
    Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S (2011) Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew Chem Int Ed 123:6931–6934CrossRefGoogle Scholar
  19. 19.
    Lu AH, Sun T, Li WC, Sun Q, Han F, Liu DH, Guo Y (2011) Synthesis of discrete and dispersible hollow carbon nanospheres with high uniformity by using confined nanospace pyrolysis. Angew Chem Int Ed 50:11765–11768CrossRefGoogle Scholar
  20. 20.
    Min L, Wei L, Shouxin L (2011) Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydr Res 346:999–1004CrossRefGoogle Scholar
  21. 21.
    Zhao S, Wang CY, Chen MM, Wang J, Shi ZQ (2009) Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor. J Phys Chem Solids 70:1256–1260CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Jia M, Gao H, Yu J, Wang L, Zou Y, Qin F, Zhao Y (2015) Porous hollow carbon spheres: facile fabrication and excellent supercapacitive properties. Electrochim Acta 184:32–39CrossRefGoogle Scholar
  23. 23.
    Wang Y, Chen Y, Liu Y, Liu W, Zhao P, Li Y, Dong Y, Wang H, Yang J (2019) Urchin-like Ni1/3Co2/3(CO3)0.5OH·0.11H2O anchoring on polypyrrole nanotubes for supercapacitor electrodes. Electrochim Acta 295:989–996CrossRefGoogle Scholar
  24. 24.
    Li Z, Mi H, Liu L, Bai Z, Zhang J, Zhang Q, Qiu J (2018) Nano-sized ZIF-8 anchored polyelectrolyte-decorated silica for nitrogen-rich hollow carbon shell frameworks toward alkaline and neutral supercapacitors. Carbon 136:176–186CrossRefGoogle Scholar
  25. 25.
    Zhao S, Li XY, Wang CY, Chen MM (2012) Preparation of bowl-like and eggshell-like hollow carbon microspheres from potato starch. Mater Lett 70:54–56CrossRefGoogle Scholar
  26. 26.
    Zhao S, Wang C-Y, Chen M-M, Sun J-H (2009) Mechanism for the preparation of carbon spheres from potato starch treated by NH4Cl. Carbon 47:331–333CrossRefGoogle Scholar
  27. 27.
    Shi N, Liu Q, Ma L, Wang T, Zhang Q, Zhang Q, Liao Y (2014) Direct degradation of cellulose to 5-hydroxymethylfurfural in hot compressed steam with inorganic acidic salts. RSC Adv 4:4978CrossRefGoogle Scholar
  28. 28.
    Chang J, Gao Z, Wang X, Wu D, Xu F, Wang X, Guo Y, Jiang K (2015) Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim Acta 157:290–298CrossRefGoogle Scholar
  29. 29.
    Fan X, Yu C, Ling Z, Yang J, Qiu J (2013) Hydrothermal synthesis of phosphate-functionalized carbon nanotube-containing carbon composites for supercapacitors with highly stable performance. Appl Mater Interfaces 5:2104–2110CrossRefGoogle Scholar
  30. 30.
    Huang C, Puziy AM, Sun T, Poddubnaya OI, Suárez-García F, Tascón J, Hulicova-Jurcakova D (2014) Capacitive behaviors of phosphorus-rich carbons derived from lignocelluloses. Electrochim Acta 137:219–227CrossRefGoogle Scholar
  31. 31.
    Yang W, Yang W, Kong L, Song A, Qin X, Shao G (2018) Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon 127:557–567CrossRefGoogle Scholar
  32. 32.
    Zhu D, Wang Y, Lu W, Zhang H, Song Z, Luo D, Gan L, Liu M, Sun D (2017) A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes. Carbon 111:667–674CrossRefGoogle Scholar
  33. 33.
    Gao Z, Chen C, Chang J, Chen L, Wu D, Xu F, Jiang K (2018) Balanced energy density and power density: asymmetric supercapacitor based on activated fullerene carbon soot anode and graphene-Co3O4 composite cathode. Electrochim Acta 260:932–943CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Jia M, Yu J, Fan J, Wang L, Zou Y, Zhao Y (2016) A tunable hierarchical porous carbon from starch pretreated by calcium acetate for high performance supercapacitors. J Solid State Electrochem 20:733–741CrossRefGoogle Scholar
  35. 35.
    Wang L, Wang Y, Wu M, Wei Z, Cui C, Mao M, Zhang J, Han X, Liu Q, Ma J (2018) Nitrogen, fluorine, and boron ternary doped carbon fibers as cathode electrocatalysts for zinc-air batteries. Small 14(20):1800737CrossRefGoogle Scholar
  36. 36.
    Wu M, Wang Y, Wei Z, Wang L, Zhuo M, Zhang J, Han X, Ma J (2018) Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries. J Mater Chem 6(23):10918–10925CrossRefGoogle Scholar
  37. 37.
    Fang Q, Zhou X, Deng W, Liu Y, Zheng Z, Liu Z (2017) Nitrogen-doped graphene nanoscroll foam with high diffusion rate and binding affinity for removal of organic pollutants. Small 13:1603779CrossRefGoogle Scholar
  38. 38.
    Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim BS, Hammond PT, Shao-Horn Y (2010) High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol 5:531–537CrossRefGoogle Scholar
  39. 39.
    Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, Huang Q, Wu A, Lin H (2015) Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater 27:7782–7787CrossRefGoogle Scholar
  40. 40.
    Zhou J, Lian J, Hou L, Zhang J, Gou H, Xia M, Zhao Y, Strobel TA, Tao L, Gao F (2015) Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat Commun 6:8503CrossRefGoogle Scholar
  41. 41.
    Itagaki M, Hatada Y, Shitanda I, Watanabe K (2010) Complex impedance spectra of porous electrode with fractal structure. Electrochim Acta 55:6255–6262CrossRefGoogle Scholar
  42. 42.
    Wang J, Liu H, Sun H, Hua W, Wang H, Liu X, Wei B (2018) One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127:85–92CrossRefGoogle Scholar
  43. 43.
    Guo H, Ding B, Wang J, Zhang Y, Hao X, Wu L, An Y, Dou H, Zhang X (2018) Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors. Carbon 136:204–210Google Scholar
  44. 44.
    Zhou C, Chen X, Liu H, Zhou J, Ma Z, Jia M, Song H (2017) Heteroatom-doped multilocular carbon nanospheres with high surface utilization and excellent rate capability as electrode material for supercapacitors. Electrochim Acta 236:53–60CrossRefGoogle Scholar
  45. 45.
    Hao ZQ, Cao JP, Zhao XY, Wu Y, Zhu JS, Dang YL, Zhuang QQ, Wei XY (2018) Preparation of porous carbon spheres from 2-keto-l-gulonic acid mother liquor by oxidation and activation for electric double-layer capacitor application. J Colloid Interface Sci 513:20–27CrossRefGoogle Scholar
  46. 46.
    Lin G, Ma R, Zhou Y, Hu C, Yang M, Liu Q, Kaskel S, Wang J (2018) Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors. J Colloid Interface Sci 527:230–240CrossRefGoogle Scholar
  47. 47.
    Fan Y, Yang X, Zhu B, Liu P-F, Lu H-T (2014) Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. J Power Sources 268:584–590CrossRefGoogle Scholar
  48. 48.
    Chen A, Li Y, Yu Y, Ren S, Wang Y, Xia K, Li S (2016) Nitrogen-doped hollow carbon spheres for supercapacitors application. J Alloys Compd 688:878–884CrossRefGoogle Scholar
  49. 49.
    Wang G, Liang K, Liu L, Yu Y, Hou S, Chen A (2018) Fabrication of monodisperse hollow mesoporous carbon spheres by using “confined nanospace deposition” method for supercapacitor. J Alloys Compd 736:35–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical Engineering & State Key Lab Separat Membranes & Membrane ProcTianjin Polytechnic UniversityTianjinPeople’s Republic of China
  2. 2.School of Materials Science and Engineering & Tianjin Key Laboratory of Advanced Fibers and Energy Storage TechnologyTianjin Polytechnic UniversityTianjinPeople’s Republic of China
  3. 3.Department of ChemistrySungkyunkwan UniversitySuwonKorea

Personalised recommendations