Advertisement

Ionics

pp 1–9 | Cite as

Nitrogen-doped carbon-coated Fe3O4/rGO nanocomposite anode material for enhanced initial coulombic efficiency of lithium-ion batteries

  • Cheng-Lu Liang
  • Jiali Li
  • Qian Tian
  • Qingqing Lin
  • Rui-Ying Bao
  • Yang LiuEmail author
  • Xiangfang Peng
  • Ming-Bo Yang
  • Wei YangEmail author
Original Paper
  • 8 Downloads

Abstract

Nitrogen-doped carbon-coated Fe3O4/reduced graphite oxide (NC@Fe3O4/rGO) nanocomposites with in situ polymerized melamine-formaldehyde resin (MFR) as the carbon sources were synthesized via the decomposition of MFR/Fe3O4/rGO nanocomposites. Fe3O4 NPs were embedded in the integrated carbon matrix composed of protective carbon layer and conductive rGO sheets offering excellent buffer effect. The NC@Fe3O4/rGO nanocomposites were tested as anode materials for lithium-ion batteries (LIBs) and displayed a large reversible specific capacity of above 900 mA h g−1 after 100 cycles at a current density of 50 mA g−1, high coulombic efficiency (~ 98%) with an initial coulombic efficiency of 86%. The high initial coulombic efficiency is critical for the practical application of the transition metal oxide–based anode materials.

Graphical abstract

The nitrogen-doped carbon-coated Fe3O4/rGO nanocomposites displayed a high initial coulombic efficiency of 86%, and stable coulombic efficiency (~ 98%) during the next cycles, indicating the formation of stable SEI film.

Keywords

Nitrogen-doped carbon Fe3O4/rGO Lithium-ion batteries Coulombic efficiency 

Notes

Acknowledgments

The authors also thank Mr. Chao-liang Zhang for his kind assistance in morphological observations.

Funding

This study was funded by the National Natural Science Foundation of China (NNSFC Grants 51422305 and 51421061), Sichuan Provincial Science Fund for Distinguished Young Scholars (2015JQO003), and State Key Laboratory of Polymer Materials Engineering (Grant No. sklpme 2014-2-02).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2019_2883_MOESM1_ESM.doc (136 kb)
ESM 1 (DOC 136 kb)

References

  1. 1.
    Luo J, Liu J, Zeng Z, Ng CF, Ma L, Zhang H, Lin J, Shen Z, Fan HJ (2013) Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett 13:6136–6143.  https://doi.org/10.1021/nl403461n CrossRefGoogle Scholar
  2. 2.
    Behera SK (2011) Enhanced rate performance and cyclic stability of Fe3O4-graphene nanocomposites for Li ion battery anodes. Chem Commun 47:10371–10373.  https://doi.org/10.1039/c1cc13218k CrossRefGoogle Scholar
  3. 3.
    Lu X, Wang R, Bai Y, Chen J, Sun J (2015) Facile preparation of a three-dimensional Fe3O4/macroporous graphene composite for high-performance Li storage. J Mater Chem A 3:12031–12037.  https://doi.org/10.1039/C5TA01803J CrossRefGoogle Scholar
  4. 4.
    Arora P, White RE, Doyle M (1998) Capacity fade mechanisms and side reactions in lithium-ion batteries. J Electrochem Soc 145:3647–3667CrossRefGoogle Scholar
  5. 5.
    Zhang X, Cheng X, Zhang Q (2016) Nanostructured energy materials for electrochemical energy conversion and storage: a review. J Energy Chem 25:967–984.  https://doi.org/10.1016/j.jechem.2016.11.003 CrossRefGoogle Scholar
  6. 6.
    Bock DC, Waller GH, Mansour AN, Marschilok AC, Takeuchi KJ, Takeuchi ES (2018) Investigation of solid electrolyte interphase layer formation and electrochemical reversibility of magnetite, Fe3O4, electrodes: a combined X-ray absorption spectroscopy and X-ray photoelectron spectroscopy study. J Phys Chem C 122:14257–14271.  https://doi.org/10.1021/acs.jpcc.8b01970 CrossRefGoogle Scholar
  7. 7.
    Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457.  https://doi.org/10.1021/cr3001884 CrossRefGoogle Scholar
  8. 8.
    Zhang S, Zhang P, Xie A, Li S, Huang F, Shen Y (2016) A novel 2D porous print fabric-like α-Fe2O3 sheet with high performance as the anode material for lithium-ion battery. Electrochim Acta 212:912–920.  https://doi.org/10.1016/j.electacta.2016.06.099 CrossRefGoogle Scholar
  9. 9.
    Dai J, Song M, Wang M, Li P, Zhang C, Shen Y, Xie A (2016) Freeze-drying growth of Co3O4/N-doped reduced graphene oxide nanocomposite as excellent anode material for lithium-ion batteries. Ceram Int 42:2410–2415.  https://doi.org/10.1016/j.ceramint.2015.10.040 CrossRefGoogle Scholar
  10. 10.
    Jung D-W, Jeong J-H, Han S-W, Oh E-S (2016) Electrochemical performance of potassium-doped wüstite nanoparticles supported on graphene as an anode material for lithium ion batteries. J Power Sources 315:16–22.  https://doi.org/10.1016/j.jpowsour.2016.03.022 CrossRefGoogle Scholar
  11. 11.
    Zhang C, Zhang P, Dai J, Zhang H, Xie A, Shen Y (2016) Facile synthesis and electrochemical properties of MoO2/reduced graphene oxide hybrid for efficient anode of lithium-ion battery. Ceram Int 42:3618–3624.  https://doi.org/10.1016/j.ceramint.2015.11.026 CrossRefGoogle Scholar
  12. 12.
    Naderi HR, Norouzi P, Ganjali MR, Gholipour-Ranjbar H (2017) Sonochemical synthesis of porous nanowall Co3O4/nitrogen-doped reduced graphene oxide as an efficient electrode material for supercapacitors. J Mater Sci Mater Electron 28:14504–14514.  https://doi.org/10.1007/s10854-017-7314-7 CrossRefGoogle Scholar
  13. 13.
    Yang C, Qing Y, An K, Chen J, Tan J, Zhang Z, Wang L, Liu C (2018) ZnO nanoparticles anchored on nitrogen and sulfur co-doped graphene sheets for lithium-ion batteries applications. Ionics 24:3781–3791.  https://doi.org/10.1007/s11581-018-2555-x CrossRefGoogle Scholar
  14. 14.
    Hao S, Zhang B, Wang Y, Li C, Feng J, Ball S, Srinivasan M, Wu J, Huang Y (2018) Hierarchical three-dimensional Fe3O4@porous carbon matrix/graphene anodes for high performance lithium ion batteries. Electrochim Acta 260:965–973.  https://doi.org/10.1016/j.electacta.2017.12.078
  15. 15.
    Chen D, Ji G, Ma Y, Lee JY, Lu J (2011) Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl Mater Interfaces 3:3078–3083.  https://doi.org/10.1021/am200592r CrossRefGoogle Scholar
  16. 16.
    Zhang SH, Li WJ, Tan BE, Chou SL, Li Z, Dou SX (2015) One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anodes for sodium-ion batteries. J Mater Chem A 3:4793–4798.  https://doi.org/10.1039/c4ta06708h CrossRefGoogle Scholar
  17. 17.
    Hariharan S, Saravanan K, Ramar V, Balaya P (2013) A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. Phys Chem Chem Phys 15:2945–2953.  https://doi.org/10.1039/C2CP44572G CrossRefGoogle Scholar
  18. 18.
    Zhang P, Zhang C, Xie A, Li C, Song J, Shen Y (2016) Novel template-free synthesis of hollow@porous TiO2 superior anode materials for lithium ion battery. J Mater Sci 51:3448–3453.  https://doi.org/10.1007/s10853-015-9662-0 CrossRefGoogle Scholar
  19. 19.
    Xu Z, Zhao K, Gan Q, Liu S, He Z (2018) Hierarchical Co3O4@C hollow microspheres with high capacity as an anode material for lithium-ion batteries. Ionics 24:3757–3769.  https://doi.org/10.1007/s11581-018-2554-y CrossRefGoogle Scholar
  20. 20.
    Sun Y, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1:16071.  https://doi.org/10.1038/nenergy.2016.71 CrossRefGoogle Scholar
  21. 21.
    Fei H, Peng Z, Li L, Yang Y, Lu W, Samuel ELG, Fan X, Tour JM (2014) Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res 7:502–510.  https://doi.org/10.1007/s12274-014-0416-0 CrossRefGoogle Scholar
  22. 22.
    Schulz N, Hausbrand R, Wittich C, Dimesso L, Jaegermann W (2018) XPS-surface analysis of SEI layers on Li-ion cathodes: part II. SEI-composition and formation inside composite electrodes. J Electrochem Soc 165:A833–A846CrossRefGoogle Scholar
  23. 23.
    Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48:1201–1217.  https://doi.org/10.1039/C1CC14764A CrossRefGoogle Scholar
  24. 24.
    Inagaki M (2012) Carbon coating for enhancing the functionalities of materials. Carbon 50:3247–3266.  https://doi.org/10.1016/j.carbon.2011.11.045 CrossRefGoogle Scholar
  25. 25.
    Chen M, Shen X, Chen K, Wu Q, Zhang P, Zhang X, Diao G (2016) Nitrogen-doped mesoporous carbon-encapsulation urchin-like Fe3O4 as anode materials for high performance Li-ions batteries. Electrochim Acta 195:94–105.  https://doi.org/10.1016/j.electacta.2016.02.128 CrossRefGoogle Scholar
  26. 26.
    Xie K, Lu Z, Huang H, Lu W, Lai Y, Li J, Zhou L, Liu Y (2012) Iron supported C@Fe3O4 nanotube array: a new type of 3D anode with low-cost for high performance lithium-ion batteries. J Mater Chem 22:5560–5567.  https://doi.org/10.1039/C2JM15955D CrossRefGoogle Scholar
  27. 27.
    Yang T-T, Zhu W-K, Liu W-L, Kong F-G, Ren M-M, Liu Q-Z, Yang Z-Z, Wang X-Q, Duan X-L (2017) Preparation of yolk–shell Fe3O4@N-doped carbon nanocomposite particles as anode in lithium ion batteries. J Mater Sci Mater Electron 28:11569–11575.  https://doi.org/10.1007/s10854-017-6957-8 CrossRefGoogle Scholar
  28. 28.
    Wang X, Liu Y, Zeng J, Peng C, Wang R (2018) MoO2/C hollow nanospheres synthesized by solvothermal method as anode material for lithium-ion batteries. Ionics.  https://doi.org/10.1007/s11581-018-2765-2
  29. 29.
    Zhu B, Guo G, Wu G, Zhang Y, Dong A, Hu J, Yang D (2019) Preparation of dual layers N-doped carbon@mesoporous carbon@Fe3O4 nanoparticle superlattice and its application in lithium-ion battery. J Alloys Compd 775:776–783.  https://doi.org/10.1016/j.jallcom.2018.10.224
  30. 30.
    Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5:5261.  https://doi.org/10.1038/ncomms6261; http://www.nature.com/articles/ncomms6261#supplementary-information. Accessed 06 Nov 2014
  31. 31.
    Bhattacharjya D, Park H-Y, Kim M-S, Choi H-S, Inamdar SN, Yu J-S (2014) Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries. Langmuir 30:318–324.  https://doi.org/10.1021/la403366e CrossRefGoogle Scholar
  32. 32.
    Jarulertwathana N, Laokawee V, Susingrat W, Hwang S-J, Sarakonsri T (2017) Nano-structure tin/nitrogen-doped reduced graphene oxide composites as high capacity lithium-ion batteries anodes. J Mater Sci Mater Electron 28:18994–19002.  https://doi.org/10.1007/s10854-017-7853-y CrossRefGoogle Scholar
  33. 33.
    Yan P, Zhang X, Hou M, Zhang R, Liu K, Liu T, Liu Y (2018) Fabrication and enhanced electrochemical performance of a nitrogen-doped porous graphene/nanometer-sized carbide-derived carbon composite for supercapacitors. Ionics 24:3949–3955.  https://doi.org/10.1007/s11581-018-2537-z CrossRefGoogle Scholar
  34. 34.
    Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778.  https://doi.org/10.1021/cm981085u CrossRefGoogle Scholar
  35. 35.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339.  https://doi.org/10.1021/ja01539a017 CrossRefGoogle Scholar
  36. 36.
    Qin Y, Yuan J, Li J, Chen D, Kong Y, Chu F, Tao Y, Liu M (2015) Crosslinking graphene oxide into robust 3D porous N-doped graphene. Adv Mater 27:5171–5175.  https://doi.org/10.1002/adma.201501735 CrossRefGoogle Scholar
  37. 37.
    Wang Q, Wang Q, Zhang D-A, Sun J, Xing L-L, Xue X-Y (2014) Core–shell α-Fe2O3@α-MoO3 nanorods as lithium-ion battery anodes with extremely high capacity and cyclability. Chem Asian J 9:3299–3306.  https://doi.org/10.1002/asia.201402809 CrossRefGoogle Scholar
  38. 38.
    Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nano 6:534–534CrossRefGoogle Scholar
  39. 39.
    Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449.  https://doi.org/10.1016/j.apsusc.2007.09.063 CrossRefGoogle Scholar
  40. 40.
    Lu J, Jiao X, Chen D, Li W (2009) Solvothermal synthesis and characterization of Fe3O4 and γ-Fe2O3 nanoplates. J Phys Chem C 113:4012–4017.  https://doi.org/10.1021/jp810583e CrossRefGoogle Scholar
  41. 41.
    Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8:2209–2211.  https://doi.org/10.1021/cm960157j CrossRefGoogle Scholar
  42. 42.
    Ni Y, Ge X, Zhang Z, Ye Q (2002) Fabrication and characterization of the plate-shaped γ-Fe2O3 nanocrystals. Chem Mater 14:1048–1052.  https://doi.org/10.1021/cm010446u CrossRefGoogle Scholar
  43. 43.
    Wu C, Zhuang Q, Wu Y, Tian L, Cui Y, Zhang X (2013) Facile synthesis of Fe3O4 hollow spheres/carbon nanotubes composites for lithium ion batteries with high-rate capacity and improved long-cycle performance. Mater Lett 113:1–4.  https://doi.org/10.1016/j.matlet.2013.09.029 CrossRefGoogle Scholar
  44. 44.
    Jiao J, Qiu W, Tang J, Chen L, Jing L (2016) Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res 9:1256–1266.  https://doi.org/10.1007/s12274-016-1021-1 CrossRefGoogle Scholar
  45. 45.
    Zhang J, Yao Y, Huang T, Yu A (2012) Uniform hollow Fe3O4 spheres prepared by template-free solvothermal method as anode material for lithium-ion batteries. Electrochim Acta 78:502–507.  https://doi.org/10.1016/j.electacta.2012.06.045 CrossRefGoogle Scholar
  46. 46.
    Yu Y, Zhu Y, Gong H, Ma Y, Zhang X, Li N, Qian Y (2012) Fe3O4 nanoparticles embedded in carbon-framework as anode material for high performance lithium-ion batteries. Electrochim Acta 83:53–58.  https://doi.org/10.1016/j.electacta.2012.08.003 CrossRefGoogle Scholar
  47. 47.
    Zhu X, Wu W, Liu Z, Li L, Hu J, Dai H, Ding L, Zhou K, Wang C, Song X (2013) A reduced graphene oxide–nanoporous magnetic oxide iron hybrid as an improved anode material for lithium ion batteries. Electrochim Acta 95:24–28.  https://doi.org/10.1016/j.electacta.2013.02.029 CrossRefGoogle Scholar
  48. 48.
    Zeng Z, Zhao H, Wang J, Lv P, Zhang T, Xia Q (2014) Nanostructured Fe3O4@C as anode material for lithium-ion batteries. J Power Sources 248:15–21.  https://doi.org/10.1016/j.jpowsour.2013.09.063 CrossRefGoogle Scholar
  49. 49.
    Zhao L, Gao MM, Yue WB, Jiang Y, Wang Y, Ren Y, Hu FQ (2015) Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 7:9709–9715.  https://doi.org/10.1021/acsami.5b01503 CrossRefGoogle Scholar
  50. 50.
    Park D-Y, Myung S-T (2014) Carbon-coated magnetite embedded on carbon nanotubes for rechargeable lithium and sodium batteries. ACS Appl Mater Interfaces 6:11749–11757.  https://doi.org/10.1021/am502424j CrossRefGoogle Scholar
  51. 51.
    Petnikota S, Marka SK, Banerjee A, Reddy MV, Srikanth VVSS, Chowdari BVR (2015) Graphenothermal reduction synthesis of ‘exfoliated graphene oxide/iron (II) oxide’ composite for anode application in lithium ion batteries. J Power Sources 293:253–263.  https://doi.org/10.1016/j.jpowsour.2015.05.075 CrossRefGoogle Scholar
  52. 52.
    Chen Y, Song B, Lu L, Xue J (2013) Ultra-small Fe3O4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability. Nanoscale 5:6797–6803.  https://doi.org/10.1039/C3NR01826A CrossRefGoogle Scholar
  53. 53.
    Liang C-L, Liu Y, Bao R-Y, Luo Y, Yang W, Xie B-H, Yang M-B (2016) Effects of Fe3O4 loading on the cycling performance of Fe3O4/rGO composite anode material for lithium ion batteries. J Alloys Compd 678:80–86.  https://doi.org/10.1016/j.jallcom.2016.03.274 CrossRefGoogle Scholar
  54. 54.
    Chen C, Ding N, Wang L, Yu Y, Lieberwirth I (2009) Some new facts on electrochemical reaction mechanism for transition metal oxide electrodes. J Power Sources 189:552–556.  https://doi.org/10.1016/j.jpowsour.2008.10.052 CrossRefGoogle Scholar
  55. 55.
    Kim IT, Magasinski A, Jacob K, Yushin G, Tannenbaum R (2013) Synthesis and electrochemical performance of reduced graphene oxide/maghemite composite anode for lithium ion batteries. Carbon 52:56–64.  https://doi.org/10.1016/j.carbon.2012.09.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Cheng-Lu Liang
    • 1
    • 2
  • Jiali Li
    • 1
  • Qian Tian
    • 1
  • Qingqing Lin
    • 1
  • Rui-Ying Bao
    • 2
  • Yang Liu
    • 1
    Email author
  • Xiangfang Peng
    • 1
  • Ming-Bo Yang
    • 2
  • Wei Yang
    • 2
    Email author
  1. 1.Department of Materials Science and EngineeringFujian University of TechnologyFuzhouPeople’s Republic of China
  2. 2.College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduChina

Personalised recommendations