, Volume 25, Issue 7, pp 3259–3268 | Cite as

The role silica pore structure plays in the performance of modified carbon paste electrodes

  • Luana V. de Souza
  • Danielle S. da Rosa
  • Oleg S. Tkachenko
  • Adriano de Araujo Gomes
  • Tania M. H. Costa
  • Leliz T. Arenas
  • Edilson V. BenvenuttiEmail author
Original Paper


Four silica materials was prepared by using different synthesis procedures, with the goal of obtaining matrices with different designed textures, microporous, mesoporous, and ordered pore structured materials, as MCM-41 and SBA-15. These silica materials were used to prepare bare carbon paste electrode, without addition of other components, as nanostructured or electroactive species. In this way, it was possible to study the influence of the textural characteristics, such as surface area, pore volume, pore size, and pore shape on the electrode performance, in a detailed and individual form. The electrodes were studied by using [Fe(CN)6]3−/4− and sulfamethoxazole as probes, in diffusional processes, employing cyclic voltammetry and differential pulse voltammetry. It was observed that surface area and pore volume contribute expressively to the electroactive area. The worst results were attained for microporous materials (0.34 cm2), while the higher electroactive area values were obtained for materials with ordered pore structure, 2.01 cm2 for MCM-41 and 2.58 cm2 for SBA-15, by using [Fe(CN)6]3−/4− as probe. Regarding sulfamethoxazole as probe, the MCM-41 modified carbon paste electrode presented the best performance. The obtained sensitivity was 24.34 nA L μmol−1 and the detection limit found was 3.10 μmol L−1. These results are satisfactory considering the electrodes are constituted just by bare silica, easy to prepare, without addition of other components.


Texture Silica materials Porosity Electrochemical Carbon paste electrode 



The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul), and CAPES (Coordenação de Aperfeiçoamento Pessoal de Nível Superior) for financial support and grants. The authors also thank CNANO (Centro de Nanociência e Nanotecnologia) and CMM (Centro de Microscopia e Microanálise) of UFRGS (Universidade Federal do Rio Grande do Sul).

Supplementary material

11581_2019_2882_MOESM1_ESM.doc (195 kb)
ESM 1 (DOC 195 kb)


  1. 1.
    Walcarius A (2018) Silica-based electrochemical sensors and biosensors: recent trends. Curr Opin Electrochem 10:88–97CrossRefGoogle Scholar
  2. 2.
    Dai Z, Ju H (2012) Bioanalysis based on nanoporous materials. Trends Anal Chem 39:149–161CrossRefGoogle Scholar
  3. 3.
    Yan F, Lin X, Su B (2016) Vertically ordered silica mesochannel films: electrochemistry and analytical applications. Analyst 141:3482–3495CrossRefGoogle Scholar
  4. 4.
    Melde BJ, Johnson BJ, Charles PT (2008) Mesoporous silicate materials in sensing. Sensors 8:5202–5228CrossRefGoogle Scholar
  5. 5.
    Onizhuk MO, Tkachenko OS, Panteleimonov AV, Varchenko VV, Belikov K, Kholin YV (2018) Electrochemical oxidation of quercetin in aqueous and ethanol-water media with the use of graphite/chemically modified silica ceramic electrode. Ionics 24:1755–1764CrossRefGoogle Scholar
  6. 6.
    Ramos JVH, Morawski FM, Costa TMH, Dias SLP, Benvenutti EV, de Menezes EW, Arenas LT (2015) Mesoporous chitosan/silica hybrid material applied for development of electrochemical sensor for paracetamol in presence of dopamine. Microporous Mesoporous Mater 217:109–118CrossRefGoogle Scholar
  7. 7.
    Montenegro LMP, de Souza LV, Lima KO, de Oliveira HPM, Fernandes AU, Morawski FM, Benvenutti EV, Arenas LT, Bianchini D (2018) Copper porphyrin immobilized on MCM-41 surface by using aminopropyl as coupling agent and its use in electrochemical oxygen determination. J Inorg Organomet Polym 28:2518–2524CrossRefGoogle Scholar
  8. 8.
    Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42:4098–4140CrossRefGoogle Scholar
  9. 9.
    Sing KSW, Everett DH, Hau RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  10. 10.
    Walcarius A (2001) Electroanalysis with pure, chemically modified, and sol-gel-derived silica-based materials. Electroanalysis 13:701–718CrossRefGoogle Scholar
  11. 11.
    El-Nahhal IM, El-Ashgar NM (2007) A review on polysiloxane-immobilized ligand systems: synthesis, characterization and applications. J Organomet Chem 692:2861–2886sCrossRefGoogle Scholar
  12. 12.
    de Menezes EW, Nunes MR, Arenas LT, Dias SLP, Garcia ITS, Gushikem Y, Costa TMH, Benvenutti EV (2012) Gold nanoparticle/charged silsesquioxane films immobilized onto Al/SiO2 surface applied on the electrooxidation of nitrite. J Solid State Electrochem 16:3703–3713CrossRefGoogle Scholar
  13. 13.
    Caldas EM, Novatzky D, Deon M, de Menezes EW, Hertz PF, Costa TMH, Arenas LT, Benvenutti EV (2017) Pore size effect in the amount of immobilized enzyme for manufacturing carbon ceramic biosensor. Microporous Mesoporous Mater 247:95–102CrossRefGoogle Scholar
  14. 14.
    Walcarius A, Mandler D, Cox JA, Collinson M, Lev O (2005) Exciting new directions in the intersection of functionalized sol–gel materials with electrochemistry. J Mater Chem 15:3663–3689CrossRefGoogle Scholar
  15. 15.
    Módolo ML, Valandro SR, Pessoa CA, Fujiwara ST (2013) Carbon ceramic electrodes obtained by basic catalysis of sol–gel process. Electrochim Acta 112:783–790CrossRefGoogle Scholar
  16. 16.
    Morawski FM, Deon M, Nicolodi S, de Menezes EW, Costa TMH, Dias SLD, Benvenutti EV, Arenas LT (2018) Magnetic silica/titania xerogel applied as electrochemical biosensor for catechol and catecholamines. Electrochim Acta 264:319–328CrossRefGoogle Scholar
  17. 17.
    Didó CA, Caneppele CDG, Schneid AC, Pereira MB, Costa TMH, Benvenutti EV (2018) Small gold nanoparticles with narrow size distribution achieved in SBA-15 pores by using ionic silsesquioxane instead of thiol group as stabilizer and adhesion agent. Microporous Mesoporous Mater 270:48–56CrossRefGoogle Scholar
  18. 18.
    Rao H, Wang X, Du X, Xue Z (2013) Mini review: electroanalytical sensors of mesoporous silica materials. Anal Lett 46:2789–2812CrossRefGoogle Scholar
  19. 19.
    Walcarius A (2015) Mesoporous materials-based electrochemical sensors. Electroanalysis 27:1303–1340CrossRefGoogle Scholar
  20. 20.
    Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2012) Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta 735:37–45CrossRefGoogle Scholar
  21. 21.
    Côme YBS, Lalo H, Wang Z, Kohring G-W, Hempelmann R, Etienne M, Walcarius A, Kuhn A (2013) Interest of the sol-gel approach for multiscale tailoring of porous bioelectrode surfaces. Electroanalysis 25:621–629CrossRefGoogle Scholar
  22. 22.
    Deon M, Caldas EM, Rosa DS, de Menezes EW, Dias SLP, Pereira MB, Costa TMH, Arenas LT, Benvenutti EV (2015) Mesoporous silica xerogel modified with bridged ionic silsesquioxane used to immobilize copper tetrasulfonated phthalocyanine applied to electrochemical determination of dopamine. J Solid State Electrochem 19:2095–2105CrossRefGoogle Scholar
  23. 23.
    Ganesan V, Walcarius A (2008) Ion exchange and ion exchange voltammetry with functionalized mesoporous silica materials. Mater Sci Eng B 149:123–132CrossRefGoogle Scholar
  24. 24.
    Walcarius A, Delacote C, Sayen S (2004) Electrochemical probing of mass transfer rates in mesoporous silica-based organic–inorganic hybrids. Electrochim Acta 49:3775–3783CrossRefGoogle Scholar
  25. 25.
    Xie X, Zhou D, Zheng X, Huang W, Wu K (2009) Electrochemical sensing of rutin using an MCM-41 modified electrode. Anal Lett 42:678–688CrossRefGoogle Scholar
  26. 26.
    da Silva DN, Tarley CRT, Pereira AC (2017) Development of a sensor based on modified carbon paste with com iron (iii) protoporphyrin immobilized on sinbzn silica matrix for l-tryptophan determination. Electroanalysis 29:2793–2802CrossRefGoogle Scholar
  27. 27.
    Sánchez A, Morante-Zarcero S, Pérez-Quintanilla D, del Hierro I, Sierra I (2013) A comparative study on carbon paste electrodes modified with hybrid mesoporous materials for voltammetric analysis of lead (II). J Electroanal Chem 689:76–82CrossRefGoogle Scholar
  28. 28.
    Wang J, Walcarius A (1996) Zeolite containing oxidase-based carbon paste biosensors. J Electroanal Chem 404:237–242CrossRefGoogle Scholar
  29. 29.
    Walcarius A, Rozanska S, Bessièrea J, Wang J (1999) Screen-printed zeolite-modified carbon electrodes. Analyst 124:1185–1190CrossRefGoogle Scholar
  30. 30.
    Zhao Y, Yuan F, Quan X, Yu H, Chen S, Zhao H, Liu Z, Hilal N (2015) An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode. Anal Methods 7:2693–2698CrossRefGoogle Scholar
  31. 31.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Science 279:548–552CrossRefGoogle Scholar
  32. 32.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  33. 33.
    Webb PA, Orr C, Camp RW, Olivier JP, Yunes YS (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corporation, NorcrossGoogle Scholar
  34. 34.
    Han J, Zhao J, Li Z, Zhang H, Yan Y, Cao D, Wang G (2018) Nanoporous carbon derived from dandelion pappus as an enhanced electrode material with low cost for amperometric detection of tryptophan. J Electroanal Chem 818:149–156CrossRefGoogle Scholar
  35. 35.
    Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  36. 36.
    Grando SR, Benvenutti EV, Campo LF, Costa TMH (2016) Fluorescent mesoporous organosilicas containing 1,4-diureyl terephthalate moieties. J Photochem Photobiol A 325:22–28CrossRefGoogle Scholar
  37. 37.
    Huang L, Kawi S, Hidajat K, Ng SC (2005) Preparation of M41S family mesoporous silica thin films on porous oxides. Microporous Mesoporous Mater 82:87–97CrossRefGoogle Scholar
  38. 38.
    Walcarius A (2010) Template-directed porous electrodes in electroanalysis. Anal Bioanal Chem 396:261–272CrossRefGoogle Scholar
  39. 39.
    Weng C-J, Hsu P-H, Hsu S-C, Chang C-H, Hung W-I, Wu P-S, Yeh J-M (2013) Synthesis of electroactive mesoporous gold–organosilica nanocomposite materials via a sol–gel process with non-surfactant templates and the electroanalysis of ascorbic acid. J Mater Chem B 1:4983–4991CrossRefGoogle Scholar
  40. 40.
    Semaan FS, Pinto EM, Cavalheiro ETG, Christopher MA, Brett CMA (2008) A graphite-polyurethane composite electrode for the analysis of furosemide. Electroanalysis 20:2287–2293CrossRefGoogle Scholar
  41. 41.
    del Torno-de Román L, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2016) Tyrosinase based biosensor for the electrochemical determination of sulfamethoxazole. Sensors Actuators B Chem 227:48–53CrossRefGoogle Scholar
  42. 42.
    Andrade LS, Rocha-Filho RC, Cass QB, Fatibello-Filho O (2009) Simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim on a boron-doped diamond electrode. Electroanalysis 21:1475–1480CrossRefGoogle Scholar
  43. 43.
    Calaça GN, Pessoa CA, Wohnrath K, Nagata N (2014) Simultaneous determination of sulfamethoxazole and trimethoprim in pharmaceutical formulations by square wave voltammetry. Int J Pharm Pharm Sci 6:438–442Google Scholar
  44. 44.
    Issac S, Kumar KG (2009) Voltammetric determination of sulfamethoxazole at a multiwalled carbon nanotube modified glassy carbon sensor and its application studies. Drug Test Anal 1:350–354CrossRefGoogle Scholar
  45. 45.
    Arvand M, Ansari R, Heydari L (2011) Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Mater Sci Eng C 31:1819–1825CrossRefGoogle Scholar
  46. 46.
    Msagati TAM, Ngila JC (2002) Voltammetric detection of sulfonamides at a poly (3-methylthiophene) electrode. Talanta 58:605–610CrossRefGoogle Scholar
  47. 47.
    Joseph R, Kumar KG (2010) Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20- tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato] Cu (II) modified carbon paste sensor. Drug Test Anal 2:278–283CrossRefGoogle Scholar
  48. 48.
    Andrade LS, Rocha-Filho RC, Cass QB, Fatibello-Filho O (2010) A novel multicommutation stopped-flow system for the simultaneous determination of sulfamethoxazole and trimethoprim by differential pulse voltammetry on a boron-doped diamond electrode. Anal Methods 2:402–407CrossRefGoogle Scholar
  49. 49.
    Souza CD, Braga OC, Vieira IC, Spinelli A (2008) Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sensors Actuators B Chem 135:66–73CrossRefGoogle Scholar
  50. 50.
    Cesarino I, Cesarino V, Lanza MRV (2013) Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: simultaneous determination of sulfamethoxazole and trimethoprim. Sensors Actuators B Chem 188:1293–1299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Luana V. de Souza
    • 1
  • Danielle S. da Rosa
    • 1
  • Oleg S. Tkachenko
    • 1
    • 2
  • Adriano de Araujo Gomes
    • 1
  • Tania M. H. Costa
    • 1
  • Leliz T. Arenas
    • 1
  • Edilson V. Benvenutti
    • 1
    Email author
  1. 1.Institute of ChemistryUFRGSPorto AlegreBrazil
  2. 2.Materials Chemistry DepartmentV. N. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations