, Volume 25, Issue 6, pp 2719–2727 | Cite as

Electrochemical behavior of magnesium ions in chloride melt

  • Zhaoting Liu
  • Guimin LuEmail author
  • Jianguo Yu
Original Paper


The electrochemical behavior of MgCl2 was investigated in ternary NaCl-KCl-CaCl2 molten chloride mixtures, using inert tungsten and steel electrodes in the temperature range from 973 to 1053 K. Electrochemical methods like square wave voltammetry (SWV), cyclic voltammetry (CV), chronoamperometry (CA), and chronopotentiometry (CP) were applied to investigate the reaction process. Results showed that reduction of Mg2+ to Mg was not a reversible process in the system. The reduction of magnesium ion on tungsten electrodes was a single-step process with the exchange of two electrons calculated by the methods of SWV and CV. The nucleation mechanism of magnesium deposition on a tungsten substrate was studied according to the electrochemical model of Scharifker-Hill, indicating that nucleation process of magnesium on the tungsten electrode was instantaneous nucleation, which was consistent with the formation and growth mechanisms of hemispherical nuclei. The diffusion coefficients of Mg2+ calculated by different methods of CV, CA, and CP at 973 K were 1.44 × 10−5, 1.75 × 10−5, and 1.27 × 10−5 cm2 s−1. In addition, the Arrhenius treatment was employed to obtain the activation energy for the diffusion process in the molten salt mixtures. The activation energy values for diffusion of Mg2+ were derived using CV and CA electrochemical techniques as Ea = 47.89 and 53.3 kJ mol−1, respectively. The deposition of Mg metal was identified by SEM-EDS and XRD analysis method.


Electrochemical behavior Chloride molten salts Diffusion coefficient Nucleation mechanism Activation energy 


Funding information

The funds for this research were provided by the National Natural Science Foundation Project of China (Grant U1407202 and Grant U1407126).


  1. 1.
    Haarberg GM (2018) Challenges for electrochemical research in molten salts and ionic liquids. Electrochemistry 86:19–19CrossRefGoogle Scholar
  2. 2.
    Avedesian MM, Baker H (1999) Magnesium and magnesium alloys-ASM specialty handbook. Workshops on Abstract State Machines. USAGoogle Scholar
  3. 3.
    Kainer KU (2006) Magnesium: proceedings of the 6th International Conference Magnesium Alloys and their Applications. Wiley-VCH,Google Scholar
  4. 4.
    Rao GM (1988) Electrochemical studies of magnesium ions in magnesium chloride containing chloride melt at 710±10°C. J Electroanal Chem Interfacial Electrochem 249:191–203CrossRefGoogle Scholar
  5. 5.
    Chen Y, Ke Y (2008) Mechanism of electrolysis of magnesium chloride in MgCl2-KCl-NaCl-CaCl2 molten salt. Chin J Appl Chem 25:1409–1412Google Scholar
  6. 6.
    Kannan GN, Srikantan S, Dandapani KS, Desikan PS (1987) Cathode conditioning in molten salt electrowinning of magnesium metal from MgCl2-NaCl-KCl-BaCl2. Bull Electrochem 3(6):671–675Google Scholar
  7. 7.
    Tunold R (1980) Proceedings of the 109th AIME Meeting, Ed. (J. McMinn),949Google Scholar
  8. 8.
    Yoon SY (1987) A spectroelectrochemical study of aluminum and magnesium electrolysis in molten chlorides. Ph.D., Massachusetts Institute of Technology, USAGoogle Scholar
  9. 9.
    Berresen B, Haarberg GM (1993) Electrochemical studies of the cathode process in pure molten magnesium chloride. J Electrochem Soc 140:L99–L100CrossRefGoogle Scholar
  10. 10.
    Martinez AM, Borresen B, Haarberg GM, Castrillejo Y, Tunold R (2004) Electrodeposition of magnesium from the eutectic LiCl-KCl melt. J Appl Electrochem 34:1271–1278CrossRefGoogle Scholar
  11. 11.
    Tang H, Ren Y, Wang S, Deng H, Cai D, Shao L, Zhao Y, Gao R, Yan Y, Zhang M (2015) Electrochemical co-deposition of Mg-Ca alloys from KCl-CaCl2-MgCl2 melts. J Electrochem Soc 162:D520–D524CrossRefGoogle Scholar
  12. 12.
    Wang S, Wei H, Zhang M, Mei L, Yang X, Yang S (2018) Electrochemical behaviour of magnesium(II) on Ni electrode in LiCl-KCl eutectic. Chem Res Chin Univ 34:1–6CrossRefGoogle Scholar
  13. 13.
    Tang H, Yan YD, Zhang ML, Xue Y, Zhang ZJ, Du WC, He H (2013) Electrochemistry of MgCl2 in LiCl-KCl eutectic melts. Acta Phys -Chim Sin 29:1698–1704(1697)Google Scholar
  14. 14.
    Chen Z, Zhang ML, Han W, Hou ZY, De Yan Y (2008) Electrodeposition of Li and electrochemical formation of Mg-Li alloys from the eutectic LiCl-KCl. J Alloys Compd 464:174–178CrossRefGoogle Scholar
  15. 15.
    Wu L (1990) A study of magnesium electrodeposition processes in NaCl-KCl-MgCl2 melts. J CENT SOUTH INST MIN METALL 21:103–111Google Scholar
  16. 16.
    Chen Y, Ye K (2008) Passivation behaviors of Mo, W electrodes in MgCl2-KCl-NaCl-CaCl2 molten salt for electrolysis of magnesium. Electrochemistry 14:197–199Google Scholar
  17. 17.
    Yang BG, Yu YX, Wang ZW, Qiu ZX (2000) Magnesium electrodeposition on the steel cathode. J Northeastern Univ 21:524–527Google Scholar
  18. 18.
    Liu JN, Sun Z, Jin XW, Li B, Song XF, Song JG (2007) The cathodic reduction of magnesium in KCl-NaCl-MgCl2 melts on a platinum electrode. Nonferrous Metals:35–38Google Scholar
  19. 19.
    Zhang ML, Yan YD, Hou ZY, Fan LA, Chen Z, Tang DX (2007) Preparation of Mg-Li alloys by electrolysis in molten salt at low temperature. Chin Chem Lett (CCL) 18:329–332CrossRefGoogle Scholar
  20. 20.
    Cao DL, Wang JK, Guo SC, Fang QH, Shi ZN (2010) An electrochemical method for the preparation of Al-Mg master alloys from MgO. Mater Sci Forum 650:260–264CrossRefGoogle Scholar
  21. 21.
    Yan YD, Zhang ML, Xue Y, Han W, Cao DX, Wei SQ (2009) Study on the preparation of Mg-Li-Zn alloys by electrochemical codeposition from LiCl-KCl-MgCl2-ZnCl2 melts. Electrochim Acta 54:3387–3393CrossRefGoogle Scholar
  22. 22.
    Yan YD, Zhang ML, Xue Y, Han W, Cao DX, He LY (2008) Electrochemical study of the codeposition of Mg-Li-Al alloys from LiCl-KCl-MgCl2-AlCl3 melts. J Appl Electrochem 39:455–461CrossRefGoogle Scholar
  23. 23.
    Wei S, Zhang M, Han W, Yan Y, Xue Y, Zhang M, Zhang B (2011) Electrochemical behavior of antimony and electrodeposition of Mg-Li-Sb alloys from chloride melts. Electrochim Acta 56:4159–4166CrossRefGoogle Scholar
  24. 24.
    Jiang T, Wang N, Peng S-M, Li M, Han W, Zhang M-L (2016) Electrochemical formation of Mg-Lu alloy and alloy layer in molten LiCl-KCl. J Alloys Compd 658:198–209CrossRefGoogle Scholar
  25. 25.
    Jiao S, Zhu H (2011) An investigation into the electrochemical recovery of rare earth ions in a CsCl-based molten salt. J Hazard Mater 189:821–826CrossRefGoogle Scholar
  26. 26.
    Song Y, Jiao SQ, Hu LW, Guo ZC (2016) The cathodic behavior of Ti(III) ion in a NaCl-2CsCl melt. Metall Mater Trans B-Process Metall Mater Process Sci 47:804–810CrossRefGoogle Scholar
  27. 27.
    Li L, Shi Z, Gao B, Xu J, Hu X, Wang Z (2014) Electrochemical behavior of carbonate ion in the LiF-NaF-Li2CO3 system. Electrochemistry 82:1072–1077CrossRefGoogle Scholar
  28. 28.
    Liang J, Li H, Huo D, Yan H, Reddy RG, Wang L, Wang L (2018) Electrochemical characteristics of TiO2 in NaCl-KCl-NaF molten salt system. Ionics:1–6Google Scholar
  29. 29.
    Vandarkuzhali S, Gogoi N, Ghosh S, Prabhakara Reddy B, Nagarajan K (2012) Electrochemical behaviour of LaCl3 at tungsten and aluminium cathodes in LiCl-KCl eutectic melt. Electrochim Acta 59:245–255CrossRefGoogle Scholar
  30. 30.
    Martı́nez AM, Børresen B, Haarberg GM, Castrillejo Y, Tunold R (2004) Electrodeposition of magnesium from CaCl2-NaCl-KCl-MgCl2 melts. J Electrochem Soc 151:C508-C513Google Scholar
  31. 31.
    Castrillejo Y, Bermejo MR, Arocas PD, Martinez AM, Barrado E (2005) Electrochemical behaviour of praseodymium (III) in molten chlorides. J Electroanal Chem 575:61–74CrossRefGoogle Scholar
  32. 32.
    Castrillejo Y, Martinez AM (1995) Electrochemical study of the properties of iron ions in ZnCl2+2NaCl melt at 450°C. J Electroanal Chem 397:139–147CrossRefGoogle Scholar
  33. 33.
    Castrillejo Y, Martinez AM (1997) Electrochemical behaviour of magnesium ions in the equimolar CaCl2-NaCl mixture at 550 °C. Electrochim Acta 42:1869–1876CrossRefGoogle Scholar
  34. 34.
    Hills GJ, Schiffrin DJ, Thompson J (1974) Electrochemical nucleation from molten salts-I. Diffusion controlled electrodeposition of silver from alkali molten nitrates. Electrochim Acta 19:1109–1109Google Scholar
  35. 35.
    Yang SH, Wang J, Wang HR, Lai XH (2016) The electrochemical behavior of Dy(III) in eutectic LiF-DyF3 at W electrode. Ionics 22:1337–1342CrossRefGoogle Scholar
  36. 36.
    Laity RW, Mcintyre JDE (2002) Chronopotentiometric diffusion coefficients in fused salts I. Theory1a. J Am Chem Soc 87:3806–3812CrossRefGoogle Scholar
  37. 37.
    Castrillejo Y, Bermejo MR, Barrado AI, Pardo R, Barrado E, Martínez AM (2005) Electrochemical behaviour of dysprosium in the eutectic LiCl–KCl at W and Al electrodes. Electrochim Acta 50:2047–2057CrossRefGoogle Scholar
  38. 38.
    C L, M F, X W (2016) Chronoamperometry and chronopotentiometry curves of NaCl-KCl-Na2WO4 eutectic system. Chin J Rare Metals 40:784–790Google Scholar
  39. 39.
    Liu JN (2007) Study on the multiparameter process of electrochemical reaction in multiple system of magnesium chloride. Ph.D, East China University of Science and Technology, ChinaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Engineering Research Center for Integrated Utilization of Salt Lake ResourcesEast China University of Science and TechnologyShanghaiChina

Personalised recommendations