Advertisement

Ionics

, Volume 25, Issue 7, pp 3129–3141 | Cite as

Triglyme-based electrolyte for sodium-ion and sodium-sulfur batteries

  • Daniele Di Lecce
  • Luca Minnetti
  • Daniele Polidoro
  • Vittorio Marangon
  • Jusef HassounEmail author
Original Paper

Abstract

Herein, we investigate a lowly flammable electrolyte formed by dissolving sodium trifluoromethanesulfonate (NaCF3SO3) salt in triethylene glycol dimethyl ether (TREGDME) solvent as suitable medium for application in Na-ion and Na/S cells. The study, performed by using various electrochemical techniques, including impedance spectroscopy, voltammetry, and galvanostatic cycling, indicates for the solution high ionic conductivity and sodium transference number (t+), suitable stability window, very low electrode/electrolyte interphase resistance and sodium stripping/deposition overvoltage. Direct exposition to flame reveals the remarkable safety of the solution due to missing fire evolution under the adopted experimental setup. The solution is further investigated in sodium cells using various electrodes, i.e., mesocarbon microbeads (MCMBs), tin-carbon (Sn–C), and sulfur-multiwalled carbon nanotubes (S-MWCNTs). The results show suitable cycling performances, with stable reversible capacity ranging from 90 mAh g−1 for MCMB to 130 mAh g−1 for Sn–C, and to 250 mAh g−1 for S-MWCNTs, thus suggesting the electrolyte as promising candidate for application in sustainable sodium-ion and sodium-sulfur batteries.

Graphical abstract

A versatile solution! Lowly flammable electrolyte solution based on triglyme shows very promising electrochemical properties for application in new-generation Na-ion and Na–S cells. The electrochemical study indicates fast ion transport, suitable stability, and remarkably low resistance at the electrode interphase. The applicability is demonstrated by tests in Na cells using graphite and tin-carbon anodes, as well as sulfur-multiwalled carbon nanotube cathode.

Keywords

Triethylene glycol dimethyl ether TREGDME NaCF3SO3 Sodium ion Sodium-sulfur battery 

Notes

Funding information

The work was funded by the grant “Fondo di Ateneo per la Ricerca Locale (FAR) 2017”, University of Ferrara, and performed within the collaboration project “Accordo di Collaborazione Quadro 2015” between University of Ferrara (Department of Chemical and Pharmaceutical Sciences) and Sapienza University of Rome (Department of Chemistry).

References

  1. 1.
    Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chemie Int Ed 54:3432–3448.  https://doi.org/10.1002/anie.201410376 CrossRefGoogle Scholar
  2. 2.
    Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614.  https://doi.org/10.1039/C6CS00776G CrossRefGoogle Scholar
  3. 3.
    Hasa I, Hassoun J, Passerini S (2017) Nanostructured Na-ion and Li-ion anodes for battery application: a comparative overview. Nano Res 10:3942–3969.  https://doi.org/10.1007/s12274-017-1513-7 CrossRefGoogle Scholar
  4. 4.
    Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224.  https://doi.org/10.1016/j.jpowsour.2012.02.038 CrossRefGoogle Scholar
  5. 5.
    Che H, Chen S, Xie Y, Wang H, Amine K, Liao X-Z, Ma Z-F (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10:1075–1101.  https://doi.org/10.1039/C7EE00524E CrossRefGoogle Scholar
  6. 6.
    Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y (2011) Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Interfaces 3:4165–4168.  https://doi.org/10.1021/am200973k CrossRefGoogle Scholar
  7. 7.
    Islam M, Jeong M-G, Hwang J-Y, Oh I-H, Sun Y-K, Jung H-G (2017) Self-assembled nickel-cobalt oxide microspheres from rods with enhanced electrochemical performance for sodium ion battery. Electrochim Acta 258:220–227.  https://doi.org/10.1016/j.electacta.2017.10.114 CrossRefGoogle Scholar
  8. 8.
    Ming J, Ming H, Yang W, Kwak W-J, Park J-B, Zheng J, Sun Y-K (2015) A sustainable iron-based sodium ion battery of porous carbon–Fe3O4/Na2FeP2O7 with high performance. RSC Adv 5:8793–8800.  https://doi.org/10.1039/C4RA14733B CrossRefGoogle Scholar
  9. 9.
    Zhang X, Fan C, Xiao P, Han S (2016) Effect of vinylene carbonate on electrochemical performance and surface chemistry of hard carbon electrodes in lithium ion cells operated at different temperatures. Electrochim Acta 222:221–231  https://doi.org/10.1016/j.electacta.2016.10.149 CrossRefGoogle Scholar
  10. 10.
    Song S, Duong HM, Korsunsky AM, Hu N, Lu L (2016) A Na+ superionic conductor for room-temperature sodium batteries. Sci Rep 6:32330  https://doi.org/10.1038/srep32330 CrossRefGoogle Scholar
  11. 11.
    Song S, Kotobuki M, Zheng F, Xu C, Savilov SV, Hu N, Lu L, Wang Y, Li WDZ (2017) A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. J Mater Chem A 5:6424–6431  https://doi.org/10.1039/C6TA11165C CrossRefGoogle Scholar
  12. 12.
    Serra Moreno J, Armand M, Berman MB, Greenbaum SG, Scrosati B, Panero S (2014) Composite PEOn:NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization. J Power Sources 248:695–702  https://doi.org/10.1016/j.jpowsour.2013.09.137 CrossRefGoogle Scholar
  13. 13.
    Yang Q, Zhang Z, Sun X-G, Hu Y-S, Xing H, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064  https://doi.org/10.1039/C7CS00464H CrossRefGoogle Scholar
  14. 14.
    Park C-W, Ryu H-S, Kim K-W, Ahn J-H, Lee J-Y, Ahn H-J (2007) Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte. J Power Sources 165:450–454  https://doi.org/10.1016/j.jpowsour.2006.11.083 CrossRefGoogle Scholar
  15. 15.
    Di Lecce D, Sharova V, Jeong S, Moretti A, Passerini S (2018) A multiple electrolyte concept for lithium-metal batteries. Solid State Ionics 316:66–74  https://doi.org/10.1016/j.ssi.2017.12.012 CrossRefGoogle Scholar
  16. 16.
    Agostini M, Ulissi U, Di Lecce D, Ahiara Y, Ito S, Hassoun J (2015) A lithium-ion battery based on an ionic liquid electrolyte, tin-narbon nanostructured anode, and Li2O-ZrO2-coated Li[Ni0.8Co0.15Al0.05]O2 cathode. Energy Technol 3:632–637  https://doi.org/10.1002/ente.201402226 CrossRefGoogle Scholar
  17. 17.
    Carbone L, Munoz S, Gobet M, Devany M, Greenbaum S, Hassoun J (2017) Characteristics of glyme electrolytes for sodium battery: nuclear magnetic resonance and electrochemical study. Electrochim Acta 231:223–229  https://doi.org/10.1016/j.electacta.2017.02.007 CrossRefGoogle Scholar
  18. 18.
    Kim H, Hong J, Park Y-U, Kim J, Hwang I, Kang K (2015) Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater 25:534–541  https://doi.org/10.1002/adfm.201402984 CrossRefGoogle Scholar
  19. 19.
    Dutta PK, Mitra S (2017) Efficient sodium storage: experimental study of anode with additive-free ether-based electrolyte system. J Power Sources 349:152–162  https://doi.org/10.1016/j.jpowsour.2017.03.031 CrossRefGoogle Scholar
  20. 20.
    Das SK, Jache B, Lahon H, Bender CL, Janek J, Adelhelm P (2016) Graphene mediated improved sodium storage in nanocrystalline anatase TiO2 for sodium ion batteries with ether electrolyte. Chem Commun 52:1428–1431  https://doi.org/10.1039/C5CC09656A CrossRefGoogle Scholar
  21. 21.
    Zhu Y-E, Yang L, Zhou X, Li F, Wei J, Zhou Z (2017) Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. J Mater Chem A 5:9528–9532  https://doi.org/10.1039/C7TA02515G CrossRefGoogle Scholar
  22. 22.
    Jache B, Binder JO, Abe T, Adelhelm P (2016) A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries. Phys Chem Chem Phys 18:14299–14316  https://doi.org/10.1039/C6CP00651E CrossRefGoogle Scholar
  23. 23.
    Guo C, Zhang K, Zhao Q, Peia L, Chen J (2015) High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. Chem Commun 51:10244–10247  https://doi.org/10.1039/C5CC02251G CrossRefGoogle Scholar
  24. 24.
    Yu X, Manthiram A (2014) Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries. ChemElectroChem 1:1275–1280  https://doi.org/10.1002/celc.201402112 CrossRefGoogle Scholar
  25. 25.
    Ryu H, Kim T, Kim K, Ahn J-H, Nam T, Wang G, Ahn H-J (2011) Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. J Power Sources 196:5186–5190  https://doi.org/10.1016/j.jpowsour.2011.01.109 CrossRefGoogle Scholar
  26. 26.
    Wei S, Xu S, Agrawral A, Choudhury S, Lu Y, Tu Z, Ma L, Archer LA (2016) A stable room-temperature sodium–sulfur battery. Nat Commun 7:11722  https://doi.org/10.1038/ncomms11722 CrossRefGoogle Scholar
  27. 27.
    Li J, Yan D, Lu T, Qin W, Yao Y, Pan L (2017) Significantly improved sodium-ion storage performance of CuS nanosheets anchored into reduced graphene oxide with ether-based electrolyte. ACS Appl Mater Interfaces 9:2309–2316  https://doi.org/10.1021/acsami.6b12529 CrossRefGoogle Scholar
  28. 28.
    Zhang J, Wang D-W, Lv W, Zhang S, Liang Q, Zheng D, Kanga F, Yang Q-H (2017) Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci 10:370–376  https://doi.org/10.1039/C6EE03367A CrossRefGoogle Scholar
  29. 29.
    Benítez A, Di Lecce D, Caballero Á, Morales J, Rodríguez-Castellón E, Hassoun J (2018) Lithium sulfur battery exploiting material design and electrolyte chemistry: 3D graphene framework and diglyme solution. J Power Sources 397:102–112  https://doi.org/10.1016/j.jpowsour.2018.07.002 CrossRefGoogle Scholar
  30. 30.
    Di Lecce D, Carbone L, Gancitano V, Hassoun J (2016) Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes. J Power Sources 334:146–153  https://doi.org/10.1016/j.jpowsour.2016.09.164 CrossRefGoogle Scholar
  31. 31.
    Carbone L, Moro PT, Gobet M, Munoz S, Devany M, Greenbaum SG, Hassoun J (2018) Enhanced lithium oxygen battery using a glyme electrolyte and carbon nanotubes. ACS Appl Mater Interfaces 10:16367–16375  https://doi.org/10.1021/acsami.7b19544 CrossRefGoogle Scholar
  32. 32.
    Hasa I, Dou X, Buchholz D, Shao-Horn Y, Hassoun J, Passerini S, Scrosati B (2016) A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J Power Sources 310:26–31  https://doi.org/10.1016/j.jpowsour.2016.01.082 CrossRefGoogle Scholar
  33. 33.
    Elia GA, Hasa I, Hassoun J (2016) Characterization of a reversible, low-polarization sodium-oxygen battery. Electrochim Acta 191:516–520  https://doi.org/10.1016/j.electacta.2016.01.062 CrossRefGoogle Scholar
  34. 34.
    Lee D-J, Park J-W, Hasa I, Sun Y-K, Scrosati B, Hassoun J (2013) Alternative materials for sodium ion–sulphur batteries. J Mater Chem A 1:5256  https://doi.org/10.1039/c3ta10241f CrossRefGoogle Scholar
  35. 35.
    Hess S, Wohlfahrt-Mehrens M, Wachtler M (2015) Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. J Electrochem Soc 162:A3084–A3097  https://doi.org/10.1149/2.0121502jes CrossRefGoogle Scholar
  36. 36.
    Tobishima S, Morimoto H, Aoki M, Saito Y, Inose T, Fukumoto T, Kuryu T (2004) Glyme-based nonaqueous electrolytes for rechargeable lithium cells. Electrochim Acta 49:979–987  https://doi.org/10.1016/j.electacta.2003.10.009 CrossRefGoogle Scholar
  37. 37.
    Carbone L, Gobet M, Peng J, Devany M, Scrosati B, Greenbaum S, Hassoun J (2015) Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery. J Power Sources 299:460–464  https://doi.org/10.1016/j.jpowsour.2015.08.090 CrossRefGoogle Scholar
  38. 38.
    Carbone L, Gobet M, Peng J, Devany M, Scrosati B, Greenbaum S, Hassoun J (2015) Comparative study of ether-based electrolytes for application in lithium-sulfur battery. ACS Appl Mater Interfaces 7:13859–13865  https://doi.org/10.1021/acsami.5b02160 CrossRefGoogle Scholar
  39. 39.
    Di Lecce D, Fasciani C, Scrosati B, Hassoun J (2015) A gel–polymer Sn–C/LiMn0.5Fe0.5PO4 battery using a fluorine-free salt. ACS Appl Mater Interfaces 7:21198–21207  https://doi.org/10.1021/acsami.5b05179 CrossRefGoogle Scholar
  40. 40.
    Carbone L, Di Lecce D, Gobet M, Munoz S, Devany M, Greenbaum S, Hassoun S (2017) Relevant features of a triethylene glycol dimethyl ether-based electrolyte for application in lithium battery. ACS Appl Mater Interfaces 9:17085–17095  https://doi.org/10.1021/acsami.7b03235 CrossRefGoogle Scholar
  41. 41.
    Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114:11503–11618  https://doi.org/10.1021/cr500003w CrossRefGoogle Scholar
  42. 42.
    Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124  https://doi.org/10.1021/cr00083a006 CrossRefGoogle Scholar
  43. 43.
    Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328.  https://doi.org/10.1016/0032-3861(87)90394-6 CrossRefGoogle Scholar
  44. 44.
    Lee D-J, Agostini M, Park J-W, Sun Y-K, Hassoun J, Scrosati B (2013) Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. ChemSusChem 6:2245–2248  https://doi.org/10.1002/cssc.201300313 CrossRefGoogle Scholar
  45. 45.
    Elia GA, Park J, Sun Y, Scrosati B, Hassoun J (2014) Role of the lithium salt in the performance of lithium-oxygen batteries: a comparative study. ChemElectroChem 1:47–50  https://doi.org/10.1002/celc.201300160 CrossRefGoogle Scholar
  46. 46.
    Eshetu GG, Diemant T, Hekmatfar M, Grugeon S, Behm RJ, Laruelle S, Armand M, Passerini S (2019) Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. Nano Energy 55:327–340  https://doi.org/10.1016/j.nanoen.2018.10.040 CrossRefGoogle Scholar
  47. 47.
    Zhang J, Wang D-W, Lv W, Qin L, Niu S, Zhang S, Cao T, Kang F, Yang Q-H (2018) Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges. Adv Energy Mater 8:1801361  https://doi.org/10.1002/aenm.201801361 CrossRefGoogle Scholar
  48. 48.
    Bridel J-S, Grugeon S, Laruelle S, Hassoun J, Reale P, Scrosati B, Tarascon J-M (2010) Decomposition of ethylene carbonate on electrodeposited metal thin film anode. J Power Sources 195:2036–2043  https://doi.org/10.1016/j.jpowsour.2009.10.038 CrossRefGoogle Scholar
  49. 49.
    Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763.  https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z CrossRefGoogle Scholar
  50. 50.
    Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chemie Int Ed 53:10169–10173  https://doi.org/10.1002/anie.201403734 CrossRefGoogle Scholar
  51. 51.
    Hasa I, Passerini S, Hassoun J (2015) A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. RSC Adv 5:48928–48934  https://doi.org/10.1039/C5RA06336A CrossRefGoogle Scholar
  52. 52.
    Zhang Z, Zhao J, Wang H, Gong Y, Xu JL (2018) Facile synthesis of Sb/CNT nanocomposite as anode material for sodium-ion batteries. Funct Mater Lett 11:1850004  https://doi.org/10.1142/S1793604718500042 CrossRefGoogle Scholar
  53. 53.
    Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D (2014) Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano 8:4415–4429  https://doi.org/10.1021/nn4063598 CrossRefGoogle Scholar
  54. 54.
    Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy. Environ Sci 4:3287  https://doi.org/10.1039/c1ee01388b Google Scholar
  55. 55.
    Fan X-Y, Liu P, Wang S, Han J, Ni K, Gou L, Xu L, Li D, Lin C, Li R (2018) Electrochemical construction and sodium storage performance of three-dimensional porous self-supported MoS2 electrodes. Funct Mater Lett 11:1850050  https://doi.org/10.1142/S1793604718500509 CrossRefGoogle Scholar
  56. 56.
    Liu J, Dai J, Huang L, Fu B (2018) Flexible and binder-free electrospun Co3O4 nanoparticles/carbon composite nanofiber mats as negative electrodes for sodium-ion batteries. Funct Mater Lett 11:1850072  https://doi.org/10.1142/S1793604718500728 CrossRefGoogle Scholar
  57. 57.
    Hassoun J, Derrien G, Panero S, Scrosati B (2008) A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater 20:3169–3175  https://doi.org/10.1002/adma.200702928 CrossRefGoogle Scholar
  58. 58.
    Elia GA, Nobili F, Tossici R, Marassi R, Savoini A, Panero S, Hassoun J (2015) Nanostructured tin-carbon/ LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature. J Power Sources 275:227–233  https://doi.org/10.1016/j.jpowsour.2014.10.144 CrossRefGoogle Scholar
  59. 59.
    Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336–2340  https://doi.org/10.1002/adma.200700748 CrossRefGoogle Scholar
  60. 60.
    Di Lecce D, Brutti S, Panero S, Hassoun J (2015) A new Sn-C/LiFe0.1Co0.9PO4 full lithium-ion cell with ionic liquid-based electrolyte. Mater Lett 139:329–332  https://doi.org/10.1016/j.matlet.2014.10.089 CrossRefGoogle Scholar
  61. 61.
    Di Lecce D, Verrelli R, Hassoun J (2016) New lithium ion batteries exploiting conversion/alloying anode and LiFe0.25Mn0.5Co0.25PO4 olivine cathode. Electrochim Acta 220:384–390  https://doi.org/10.1016/j.electacta.2016.10.067 CrossRefGoogle Scholar
  62. 62.
    Elia GA, Ulissi U, Jeong S, Passerini S, Hassoun J (2016) Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. Energy Environ Sci 9:3210–3220  https://doi.org/10.1039/C6EE01295G CrossRefGoogle Scholar
  63. 63.
    Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angew Chemie Int Ed 49:2371–2374  https://doi.org/10.1002/anie.200907324 CrossRefGoogle Scholar
  64. 64.
    Hasa I, Hassoun J, Sun Y-K, Scrosati B (2014) Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode. ChemPhysChem 15:2152–2155  https://doi.org/10.1002/cphc.201400088 CrossRefGoogle Scholar
  65. 65.
    Oh S-M, Myung S-T, Jang M-W, Scrosati B, Hassoun J, Sun Y-K (2013) An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. Phys Chem Chem Phys 15:3827–3833  https://doi.org/10.1039/c3cp00070b CrossRefGoogle Scholar
  66. 66.
    Zhang B, Rousse G, Foix D, Dugas R, Dalla Corte DA, Tarascon J-M (2016) Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries. Adv Mater 28:9824–9830  https://doi.org/10.1002/adma.201603212 CrossRefGoogle Scholar
  67. 67.
    Lim D-H, Agostini M, Ahn J-H, Matic A (2018) An electrospun nanofiber membrane as gel-based electrolyte for room-temperature sodium-sulfur batteries. Energy Technol 6:1214–1219  https://doi.org/10.1002/ente.201800170 CrossRefGoogle Scholar
  68. 68.
    Kumar D, Rajouria SK, Kuhar SB, Kanchan DK (2017) Progress and prospects of sodium-sulfur batteries: a review. Solid State Ionics 312:8–16  https://doi.org/10.1016/j.ssi.2017.10.004 CrossRefGoogle Scholar
  69. 69.
    Kim I, Park J-YJ-W, Kim C, Park J-W, Ahn J-P, Ahn J-H, Kim K-W, Ahn H-J (2016) Sodium polysulfides during charge/discharge of the room-temperature Na/S battery using TEGDME electrolyte. J Electrochem Soc 163:A611–A616  https://doi.org/10.1149/2.0201605jes CrossRefGoogle Scholar
  70. 70.
    Carbone L, Greenbaum SG, Hassoun J (2017) Lithium sulfur and lithium oxygen batteries: new frontiers of sustainable energy storage. Sustain Energy Fuels 1:228–247  https://doi.org/10.1039/C6SE00124F CrossRefGoogle Scholar
  71. 71.
    Wang H, Wang C, Matios E, Li W (2018) Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew Chemie Int Ed 57:7734–7737  https://doi.org/10.1002/anie.201801818 CrossRefGoogle Scholar
  72. 72.
    Shin HD, Agostini M, Belharouak I, Hassoun J, Sun Y-K (2016) High-power lithium polysulfide-carbon battery. Carbon N Y 96:125–130  https://doi.org/10.1016/j.carbon.2015.09.034 CrossRefGoogle Scholar
  73. 73.
    Benítez A, Di Lecce D, Elia GA, Caballero Á, Morales J, Hassoun J (2018) A lithium-ion battery using a 3 D-array nanostructured graphene–sulfur cathode and a silicon oxide-based anode. ChemSusChem 11:1512–1520  https://doi.org/10.1002/cssc.201800242 CrossRefGoogle Scholar
  74. 74.
    Di Lecce D, Marangon V, Benítez A, Caballero Á, Morales J, Rodríguez-Castellón E, Hassoun J (2019) High capacity semi-liquid lithium sulfur cells with enhanced reversibility for application in new-generation energy storage systems. J Power Sources 412:575–585  https://doi.org/10.1016/j.jpowsour.2018.11.068 CrossRefGoogle Scholar
  75. 75.
    Benítez A, Caballero Á, Rodríguez-Castellón E, Morales J, Hassoun J (2018) The role of current collector in enabling the high performance of Li/S battery. ChemistrySelect 3:10371–10377  https://doi.org/10.1002/slct.201802529 CrossRefGoogle Scholar
  76. 76.
    Carbone L, Peng J, Agostini M, Gobet M, Devany M, Scrosati B, Greenbaum S, Hassoun J (2017) Carbon composites for a high-energy lithium-sulfur battey with a glyme-based electrolyte. ChemElectroChem 4:209–215  https://doi.org/10.1002/celc.201600586 CrossRefGoogle Scholar
  77. 77.
    Di Lecce D, Verrelli R, Hassoun J (2017) Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chem 19:3442–3467  https://doi.org/10.1039/C7GC01328K CrossRefGoogle Scholar
  78. 78.
    Di Lecce D, Verrelli R, Campanella D, Marangon V, Hassoun J (2017) A new CuO-Fe2O3-mesocarbon microbeads conversion anode in a high-performance lithium-ion battery with a Li1.35Ni0.48Fe0.1Mn1.72O4 spinel cathode. ChemSusChem 10:1607–1615  https://doi.org/10.1002/cssc.201601638 CrossRefGoogle Scholar
  79. 79.
    Carbone L, Coneglian T, Gobet M, Munoz S, Devany M, Greenbaum S, Hassoun J (2018) A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. J Power Sources 377:26–35  https://doi.org/10.1016/j.jpowsour.2017.11.079 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Daniele Di Lecce
    • 1
  • Luca Minnetti
    • 1
  • Daniele Polidoro
    • 1
  • Vittorio Marangon
    • 1
  • Jusef Hassoun
    • 1
    • 2
    Email author
  1. 1.Department of Chemical and Pharmaceutical SciencesUniversity of FerraraFerraraItaly
  2. 2.National Interuniversity Consortium of Materials Science and Technology (INSTM) University of Ferrara Research UnitUniversity of FerraraFerraraItaly

Personalised recommendations