, Volume 25, Issue 7, pp 3453–3460 | Cite as

Membrane hydration number of Li+ ion in highly concentrated aqueous LiCl solutions

  • M. J. M. JafeenEmail author
  • M. A. Careem
  • S. Skaarup
Original Paper


The hydration numbers of Li+ ions in various concentrated aqueous LiCl electrolytes have been determined using a novel physico-chemical environment of conducting polypyrrole polymer in order to investigate the size of the primary hydration shell of Li+ ions. Simultaneous cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM) techniques were used. The primary (membrane) hydration numbers obtained are 2 M LiCl, 5.4–5.5; 2.5 M LiCl, 4.9–5.0; 3 M LiCl, 3.9–4.0; 4 M LiCl, 3.5–3.6; 5 M LiCl, 2.8–3.1; 6 M LiCl, 2.6–2.7; 7 M LiCl, 1.7–1.8. The values obtained are found to remain constant and independent of the concentrations of the electrolytes below ~ 2 M but to decrease considerably with increasing concentrations. The estimation of free bulk water implies that the structure of highly concentrated aqueous electrolytes is different than that in the standard concentrations and that electrolytes may contain two types of water molecules, namely tightly bound water molecules and loosely bound water molecules but hardly contain any free bulk water molecules.


Hydration number Li ion LiCl electrolytes Cyclic voltammetry EQCM Polypyrrole 


Supplementary material


  1. 1.
    Bockris JO’M, Reddy AKN (1998) Modern electrochemistry 1, vol 1, 2nd edn. Plenum Press, New YorkGoogle Scholar
  2. 2.
    Rempe SB, Pratt LR, Hummer G, Kress JD, Martin RL, Redondo A (2000) The hydration number of Li+ in liquid water. J Am Chem Soc 122:966–967CrossRefGoogle Scholar
  3. 3.
    Varma S, Rempe SB (2006) Coordination numbers of alkali metal ions in aqueous solutions. Biophys Chem 124:192–199CrossRefGoogle Scholar
  4. 4.
    Rempe SB, Pratt LR (2001) The hydration number of Na+ in liquid water. Fluid Phase Equilb 121:183Google Scholar
  5. 5.
    Mahler J, Persson I (2012) A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51:425–438CrossRefGoogle Scholar
  6. 6.
    Smirnov PR, Trostin VN (2006) Structure of the nearest surrounding of the Li+ ion in aqueous solutions of its salts. Russ J Gen Chem 76:175–182CrossRefGoogle Scholar
  7. 7.
    Smirnov PR, Trostin VN (2007) Structures of the nearest surroundings of the K+, Rb+, and Cs+ ions in aqueous solutions of their salts. Russ J Gen Chem 77:2101–2107CrossRefGoogle Scholar
  8. 8.
    Newsome JR, Nielson GW, Enderby JE (1980) Lithium ions in aqueous solution. J Phys C Solid State Phys 13:923Google Scholar
  9. 9.
    Afanasiev VN, Ustinov AN, Vasurina IY (2009) State of Hydration Shells of Sodium Chloride in Aqueous Solutions in a Wide Concentration Range at273.15−373.15 K. J Phys Chem B133:212Google Scholar
  10. 10.
    Harsanyi I, Bopp PA, Vrhovsek A, Pusztai L (2011) On the hydration structure of LiCl aqueous solutions: a reverse Monte Carlo based combination of diffraction data and molecular dynamics simulations. J Mol Liq 158:61–67CrossRefGoogle Scholar
  11. 11.
    MacDiarmid AG (2001) Nobel lecture: “synthetic metals”: a novel role for organic polymers. Rev Mod Phys 73:701–712CrossRefGoogle Scholar
  12. 12.
    Skaarup S, Jafeen MJM, Careem MA (2010) Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer. Solid State Ionics 181:1245–1250CrossRefGoogle Scholar
  13. 13.
    Bay L, Mogensen N, Skaarup S, Larsen PS, Jorgensen M, West K (2002) Polypyrrole doped with alkyl benzenesulfonates. Macromolecules 35:9345–9351CrossRefGoogle Scholar
  14. 14.
    Benslimane M, Gravesen P, West K, Bay L, Skaarup S (2000) Proc. 7th Int. Conf. New Actuators, Bremen, Germany, 635Google Scholar
  15. 15.
    Gandhi MR, Murray P, Spinks GM, Wallace GG (1995) Mechanism of electromechanical actuation in polypyrrole. Synth Met 73:247–256CrossRefGoogle Scholar
  16. 16.
    Skaarup S (2006) In: Chowdari BVR, Careem MA, Dissanayake MAKL, Rajapakse RMG, Seneviratne VA (eds) Solid state ionics: advanced materials for emerging technologies. World Scientific, Singapore, p 768CrossRefGoogle Scholar
  17. 17.
    Jafeen MJM, Skaarup S, Careem MA (2014) A study on the electrochemical behaviour of polypyrrole films in concentrated aqueous alkali halide electrolytes. Ionics 20:535–544CrossRefGoogle Scholar
  18. 18.
    Velmurugu Y, Skaarup S (2005) Ion and solvent transport in polypyrrole: experimental test of osmotic model. Ionics 11:370–374CrossRefGoogle Scholar
  19. 19.
    Jafeen MJM, Careem MA, Skaarup S (2012) A novel method for the determination of membrane hydration numbers of cations in conducting polymers. J Solid State Electrochem 16:1753–1759CrossRefGoogle Scholar
  20. 20.
    Harsanyi I, Temleitner L, Beuneu B, Pusztai L (2012) Neutron and X-ray diffraction measurements on highly concentrated aqueous LiCl solutions. J Mol Liq 165:94–100CrossRefGoogle Scholar
  21. 21.
    Israelachvili JN (2013) Proc Matl Acad Sci U S A. 110 9674Google Scholar
  22. 22.
    Smiechowski M (2016) Anion–water interactions of weakly hydrated anions: molecular dynamics simulations of aqueous NaBF4and NaPF6. Mol Phys 114(12):1831–1846CrossRefGoogle Scholar
  23. 23.
    Mason PE, Ansell S, Neilson GW, Rempe SB (2015) Neutron Scattering studies of the hydration structure of Li+. J Phys Chem B 119:2003–2009CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical SciencesSouth Eastern University of Sri LankaSammanthuraiSri Lanka
  2. 2.Department of PhysicsUniversity of PeradeniyaPeradeniyaSri Lanka
  3. 3.Department of ChemistryTechnical University of DenmarkLyngbyDenmark

Personalised recommendations