Advertisement

Ionics

pp 1–9 | Cite as

Facile synthesis and electrochemical properties of Sn-doped KMn8O16 in lithium-ion battery applications

  • Yan Ran
  • Shurui Yang
  • Xuefeng Yu
  • Fei Teng
  • Shiquan WangEmail author
  • Huimin Wu
  • Chuanqi Feng
Original Paper
  • 10 Downloads

Abstract

KMn8O16 nanorods were synthesized via a reflux method with MnSO4·H2O and KMnO4 as reactants and SnCl4·5H2O as dopant. The microstructures and morphologies of the KMn8O16 nanorods and Sn4+-doped KMn8O16 nanorods were characterized using XRD, BET, SEM, EDX, and TEM. The electrochemical measurements demonstrated that ion-doped KMn8O16 nanorods (molar ratio of Sn4+ and KMn8O16 is 0.03) presented a much higher reversible discharge capacity (151.4 mAh g−1) and went up to a discharge capacity of 159.1 mAh g−1 after 100 cycles, compared with non-doped KMn8O16 nanorods (129.8 mAh g−1) as cathode materials in lithium-ion battery (LIB). These results demonstrate that the Sn4+ doping on the crystal structure of KMn8O16 can enhance the electrochemical property of material during the charging and discharging process.

Keywords

Nanorods KMn8O16 Cathode material Lithium-ion battery 

Notes

Funding information

This work was financially supported by an open fund by the Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (KFK1510) (a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)) and State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology (GCTKF2014013).

References

  1. 1.
    Xiong F, Tan S, Wei Q, Zhang G, Sheng J, An Q, Mai L (2017) Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. Nano Energy 32:347–352CrossRefGoogle Scholar
  2. 2.
    Shi S, Zhang S, Wu Z, Wang T, Zong J, Zhao M, Yang G (2017) Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries. J Power Sources 337:82–91CrossRefGoogle Scholar
  3. 3.
    Li Z, Zhang D, Yang F (2009) Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J Mater Sci 44:2435–2443CrossRefGoogle Scholar
  4. 4.
    Zhong YJ, Wu ZG, Li JT, Xiang W, Guo XD, Zhong BH, Wang XL (2018) Synthesis and lithium-ion storage performances of LiFe0.5 Co0.5PO4/C nanoplatelets and nanorods. Ionics 24:2275–2285Google Scholar
  5. 5.
    Ren J, Li R, Liu Y, Cheng Y, Mu D, Zheng R, Liu J, Dai C (2017) The impact of aluminum impurity on the regenerated lithium nickel cobalt manganese oxide cathode materials from spent LIBs. New J Chem 41:10959–10965CrossRefGoogle Scholar
  6. 6.
    Li YW, Yao JH, Uchaker E, Yang JW, Huang YX, Zhang M, Cao GZ (2013) Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Adv Energy Mater 3:1171–1175CrossRefGoogle Scholar
  7. 7.
    Badrudin FW, Rasiman MSA, Taib MFM, Hussin NH, Hassan OH, Yahya MZA (2014) First principles study on structural and electronic properties of LiFeSO4OH cathode material for lithium ion batteries. Appl Mech Mater 510:33–38CrossRefGoogle Scholar
  8. 8.
    Aboulaich A, Ouzaouit K, Faqir H, Kaddami A, Benzakour I, Akalay I (2016) Improving thermal and electrochemical performances of LiCoO2 cathode at high cut-off charge potentials by MF3 (M=Ce, Al) coating. Mater Res Bull 73:362–368CrossRefGoogle Scholar
  9. 9.
    Suib SL (2008) Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc Chem Res 41:479–487CrossRefGoogle Scholar
  10. 10.
    Zhan C, Lu J, Jeremy KA, Wu T, Jansen AN, Sun YK, Qiu X, Amine K (2013) Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nat Commun 4:2437–2444CrossRefGoogle Scholar
  11. 11.
    Niu KY, Lin F, Fang L, Nordlund D, Tao R, Weng TC, Doeff MM, Zheng H (2015) Structural and chemical evolution of amorphous nickel Iron complex hydroxide upon lithiation/delithiation. Chem Mater 27:1583–1589CrossRefGoogle Scholar
  12. 12.
    Wang JL, Li ZH, Yang J, Tang JJ, Yu JJ, Nie WB, Lei GT, Xiao QZ (2012) Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries. Electrochim Acta 75:115–122CrossRefGoogle Scholar
  13. 13.
    Shan Z, Lu M, Curry DE, Beale S, Campbell S, Poduska KM, Bennett C, Oakes KD, Zhang X (2017) Regenerative nanobots based on magnetic layered double hydroxide for azo dye removal and degradation. Chem Commun 53:10456–10458CrossRefGoogle Scholar
  14. 14.
    Li SL, Ai XP, Yang HX, Cao YL (2009) A polytriphenylamine-incorporated separator with reversible overcharge protection mechanism for 3.6V-class lithium-ion battery. J Power Sources 189:771–774CrossRefGoogle Scholar
  15. 15.
    Zheng H, Zhang Q, Kim SJ, Jiang XY, Dan M, Gao H, Li S, Wang SQ, Feng CQ (2013) Hydrothermal synthesis and electrochemical properties of KMn8O16 nanorods for lithium-ion battery applications. J Nanosci Nanotechnol 13:2814–2818CrossRefGoogle Scholar
  16. 16.
    Zhang CF, Feng CQ, Zhang P, Guo ZP, Chen ZX, Li S, Liu HK (2012) K0.25Mn2O4 nanofiber microclusters as high power cathode materials for rechargeable lithium batteries. RSC Adv 2:1643–1649CrossRefGoogle Scholar
  17. 17.
    Zhao J, Wang Z, Guo H, Li X, He Z, Li T (2015) Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Ceram Int 41:11396–11401CrossRefGoogle Scholar
  18. 18.
    Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44:699–728CrossRefGoogle Scholar
  19. 19.
    Zhao TL, Li L, Chen S, Chen RJ, Zhang XX, Lu J, Wu FA, Amine KM (2014) The effect of chromium substitution on improving electrochemical performance of low-cost Fe-Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. J Power Sources 245:898–907CrossRefGoogle Scholar
  20. 20.
    Xiang J, Yu XY, Paik U (2016) General synthesis of vanadium-based mixed metal oxides hollow nanofibers for high performance lithium-ion batteries. J Power Sources 329:190–196CrossRefGoogle Scholar
  21. 21.
    Clément RJ, Bruce PG, Grey CP (2015) Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J Electrochem Soc 162:2589–2604CrossRefGoogle Scholar
  22. 22.
    Ko IH, Kim SJ, Lim J, Yu SH, Ahn J, Lee JK, Sung YE (2016) Effect of PEDOT:PSS coating on manganese oxide nanowires for lithium ion battery anodes. Electrochim Acta 187:340–347CrossRefGoogle Scholar
  23. 23.
    Lou XW, Li CM, Archer LA (2010) Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21:2536–2539CrossRefGoogle Scholar
  24. 24.
    Chen TY, Liu YT, Wu PC, Hu CW, Yang PW, Hsu LC, Lee CH, Chang CC (2016) Lithiation induced crystal restructure of hydrothermal prepared Sn/TiO2 nanocrystallite with substantial enhanced the capacity and cycling performance for lithium-ion battery. RSC Adv 6:48620–48629CrossRefGoogle Scholar
  25. 25.
    Kim TH, Park JS, Chang SK, Choi S, Ji HR, Song HK (2012) The current move of lithium ion batteries towards the next phase. Adv Energy Mater 2:860–872CrossRefGoogle Scholar
  26. 26.
    Kostiantyn K, Loredana P, Bodnarchuk MI, Frank K, Maksym Y, Marc W, Christoph G, Kovalenko MV (2013) Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J Am Chem Soc 135:4199–4202CrossRefGoogle Scholar
  27. 27.
    Liu H, Bi S, Wen G, Teng X, Gao P, Ni Z, Zhu Y, Zhang F (2012) Synthesis and electrochemical performance of Sn-doped Li3V2(PO4)3/C cathode material for lithium ion battery by microwave solid-state technique. J Alloys Compd 543:99–104CrossRefGoogle Scholar
  28. 28.
    Sun M, Ye F, Lan B, Yu L, Cheng XL, Liu SN, Zhang XQ (2012) One-step hydrothermal synthesis of Sn-doped OMS-2 and their electrochemical performance. Int J Electrochem Sci 7:9278–9289Google Scholar
  29. 29.
    Zhang Q, Xu S, Zheng H, Luo ZH, Liu K, Wang W, Li GH, Wang SQ, Liu JW, Feng CQ (2017) Hydrothermal synthesis and electrochemical performance of manganese oxide (Na-OMS-2) nanorods. J Nanosci Nanotechnol 17:1470–1475CrossRefGoogle Scholar
  30. 30.
    Zheng H, Jiang XY, Wu HM, Dan M, Feng CQ, Wang SQ (2012) Synthesis and electrochemical properties of KMn8O16 nanorods. Adv Mater Res 535-537:500–504CrossRefGoogle Scholar
  31. 31.
    Zheng H, Wang T, Zhao R, Chen J, Li L (2018) Cryptomelane-type manganese oxide (KMn8O16) nanorods cathode materials synthesized by a rheological phase for lithium ion batteries. In Proceedings of the IOP Conference Series: Earth and Environmental Science: 022012Google Scholar
  32. 32.
    Zheng H, Feng CQ, Kim SJ, Yin S, Wu HM, Wang SQ, Li S (2013) Synthesis and electrochemical properties of KMn8O16 nanorods for lithium ion batteries. Electrochim Acta 88:225–230CrossRefGoogle Scholar
  33. 33.
    Wu ZG, Zhong YJ, Li JT, Wang K, Guo XD, Huang L, Zhong B, Sun SG (2016) Synthesis of a novel tunnel Na0.5K0.1MnO2 composite as cathode for sodium ion batteries. RSC Adv 6:54404–54409CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yan Ran
    • 1
  • Shurui Yang
    • 1
  • Xuefeng Yu
    • 1
  • Fei Teng
    • 2
  • Shiquan Wang
    • 1
    • 2
    Email author
  • Huimin Wu
    • 1
  • Chuanqi Feng
    • 1
  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional MoleculesHubei UniversityWuhanChina
  2. 2.Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Sciences and EngineeringNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations