pp 1–13 | Cite as

Structural, thermal analysis, and electrical conductivity of new organic-inorganic [(C4H9)4P]SbCl4 compound

  • H. ElgahamiEmail author
  • W. Trigui
  • A. Oueslati
  • F. Hlel
Original Paper


The new tetrabutylphosphonium tetrachloroantimonate (III) crystal has been grown by the solvent evaporation method. It crystallizes at room temperature in the monoclinic system (P21/n space group) with the following unit cell parameters: a = 10.535 Å (3), b = 18.796 Å (6), c = 12.743 Å (4), β = 94.39 (2)°, and Z = 4. The atomic arrangement of the title compound is composed by [(C4H9)4P]+ cations which form infinite chains along [100] direction. Two anionic groups connected by edges [Sb2Cl8]2− are intercalated in the octahedral cavities between six organic groups. The thermal analysis (DSC) studies indicate the presence of one order–disorder phase transition located at 338 K. Moreover, the electrical properties were performed in the frequency range 200 Hz–5 MHz and temperature interval from 313 to 353 K using impedance spectroscopy. Nyquist plots (−Z″ versus Z′) revealed the presence of two contributions at different temperatures associated with grain and grain boundaries. The equivalent circuit is formed by a series combination of two (Rg–C) and (Rgb–CPE) parallel. The frequency dependence of σac(ω) well described the Jonscher’s power (σac(ω) = σdc + s). In addition, the temperature dependence study of frequency exponent (S) is investigated to explain the conduction mechanism, which is attributed to the barrier hopping (CBH) model in the region I and II.

Graphical abstract


Crystal structure Phase transition Equivalent circuit AC conductivity CBH model 


Supplementary material

11581_2019_2873_MOESM1_ESM.txt (20 kb)
ESM 1 Crystal data for a new compound containing: [(C4H9)4P]SbCl4, has been deposited at the Cambridge Crystallographic Data Center as supplementary publications (CCDC -1,856,074). The data can be obtained free of charge at or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; E-mail: (TXT 19 kb)


  1. 1.
    Mitzi DB, Chondroudis K, Kagan CR (2001) Organic-inorganic electronics. IBM J Res Dev 45:29–45CrossRefGoogle Scholar
  2. 2.
    Wojtas M, Jakubas R, Ciunik Z, Medycki W (2004) Structure and phase transitions in [(CH3)4P]3[Sb2Br9] and [(CH3)4P]3[Bi2Br9]. J Solid State Chem 177:1575–1584CrossRefGoogle Scholar
  3. 3.
    Oueslati A, Bulou A, Calvayrac F, Adil K, Gargouri M, Hlel F (2013) Infrared, polarized Raman and ab initio calculations of the vibrational spectra of [N(C3H7)4]2Cu2Cl6 crystals. J Vibrational Spectrosc 64:10–20CrossRefGoogle Scholar
  4. 4.
    Ben Gzaiel M, Oueslati A, Lhoste J, Gargouri M, Bulou A (2015) Synthesis, crystal structure and high temperature phase transition in the new organic-inorganic hybrid [N(C4H9)4]3Zn2Cl7H2O crystals. J Mol Struct 1089:153–160CrossRefGoogle Scholar
  5. 5.
    Weslati N, Chaabane I, Bulou A, Hlel F (2014) Synthesis, crystal structure, thermal and dielectric properties of tetrapropylammonium tetrachloroantimonate(III). J Phys B 441:42–46CrossRefGoogle Scholar
  6. 6.
    Jakubas R, Bator G, Ciunik Z (2003) Halogenoantimonates(III) and Halogenobismuthates (III)-a rich family of ferroelectric crystals. J Phys Condens Matter 295:3–8Google Scholar
  7. 7.
    Li Y, Zheng G, Lin C, Lin J (2007) Synthesis, structure and optical properties of different dimensional organic-inorganic perovskites. Solid State Sci 9:855–861CrossRefGoogle Scholar
  8. 8.
    Aruta C, Licci F, Zappettini A, Bolzoni F, Rastelli F, Ferro P, Besagni T (2005) Growth and optical, magnetic and transport properties of (C4H9NH3)2MCl4 organic-inorganic hybrid films (M = Cu, Sn). J Appl Phys A 81:963–968CrossRefGoogle Scholar
  9. 9.
    Zhang W, Ye HY, Cai HL, Ge JZ, Xiong RG, Huang SD (2010) Discovery of new ferroelectrics:[H2dbco]2·[Cl3]·[CuCl3(H2O)2]·H2O(dbco=1,4-Diazabicycle[2.2.2] octane). J Am Chem Soc 132:7300–7302CrossRefGoogle Scholar
  10. 10.
    Trigui W, Oueslati A, Chaabane I, Hlel F (2014) Synthesis, crystal structure, dielectric properties, and AC conductivity of tri-tetrapropylammonium dodeca chlorobismuthate (III). J Ionics 20:231–241CrossRefGoogle Scholar
  11. 11.
    Khelifi M, Mkaouar I, Hlel F, Ben Salah A, Zouari R (2010) Crystal structure and electrical properties study of 4-aminopyridinium chloridobismuthate (III) (C5N2H7)4.HBi2Cl11. Ionics 16:709–715CrossRefGoogle Scholar
  12. 12.
    Kulicka B, Kinzhybalo V, Jakubas R, Ciunik Z, Baran J, Medycki W (2006) Crystal structure and phase transition of 4-aminopyridiuimtetrachlorobismuthate (III), [4-NH2C5H4NH][BiCl4], as studied by x-ray diffraction, dielectric, proton NMR and infrared spectroscopy. J Phys Condens Matter 18:5087–5104CrossRefGoogle Scholar
  13. 13.
    Pradeesh K, Agarwal M, Rao KK, Prakash GV (2010) Synthesis, crystal structure and optical properties of quasi-one-dimensional lead (II) iodide: C14H18N2Pb2I6. J Solid State Sci 12:95–98CrossRefGoogle Scholar
  14. 14.
    Plowas I, Szklarz P, Jakubas R, Bator G (2011) Structural, thermal and dielectric studies on the novel solution grown (4-dimethylaminopyridinium) chloroantimonate (III) and chlorobismuthate (III) crystals. J Mater Res Bull 46:1177–1185CrossRefGoogle Scholar
  15. 15.
    Zdanowska-Fraczek M, Holderna-Natkaniec K, Fraczek ZJ, Jakubas R (2009) Molecular dynamics and electrical conductivity of (C3N2H5)5Bi2Cl11. J Solid State Ion 180:9–12CrossRefGoogle Scholar
  16. 16.
    Bi W, Leblanc N, Mercier N, Auban-Senzier P, Pasquier C (2009) Thermally induced Bi(III) lone pair Stereoactivity: ferroelectric phase transition and semiconducting properties of (MV) BiBr5 (MV= methylviologen). J Chem Mater 21:4099–4101CrossRefGoogle Scholar
  17. 17.
    GM Sheldrick, SADABS (1996) Program for Empirical Absorption Correction of Area Detector Data. University of Gottingen, Germany 467Google Scholar
  18. 18.
    Sheldrick GM, SHELXL-97 (1997) Program of crystal structure determination. Gottingen University, Gottingen, p 112Google Scholar
  19. 19.
    Baur WH (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Cryst B 30:1195–1215Google Scholar
  20. 20.
    Zaleskit J, Pietraszkos A (1995) Crystal structure and investigation of phase transitions in di(tetraethylammonium) pentachloroantimonate (III) [N(C2H5)4]2SbCl5. J Phys Chem Solids 56:883–890CrossRefGoogle Scholar
  21. 21.
    Kulicka B, Jakubas R, Ciunik Z, Bator G, Medycki W, wiergiel JS, Baran J (2004) Structure, phase transitions and molecular dynamics in 4-methylpyridinium tetrachloroantimonate(III), [4-CH3C5H4NH][SbCl4]. J Phys Chem Solids 65:871–879CrossRefGoogle Scholar
  22. 22.
    Pressprich MR, Bond MR, Willett RD (2002) Structures of [(CH3)4P]3CoCl4, [(CH3)4Sb]2ZnBr4 and a correlation of pseudo-antifluorite [(CH3)4Pn]MX4. J Phys Chem Solids 63:79–88CrossRefGoogle Scholar
  23. 23.
    Bujak M, Zaleski J (2003) Structure of chloroantimonates (III) with an imidazolium cation: (C3H5N2)[SbCl4] and (C3H5N2)2[SbCl5]. J Mol Struct 647:121–128CrossRefGoogle Scholar
  24. 24.
    Piecha A, Gagor A, Pietraszko A, Jakubas R (2010) Unprecedented solid-state chemical reaction-from (C3N2H5)3SbBr6. H2O to (C3N2H5)5Sb2Br11. From centrosymmetric to non-centrosymmetric crystal structure. J Solid State Chem 183:3058–3066CrossRefGoogle Scholar
  25. 25.
    Aloui Z, Ferretti V, Abid S, Rzaigui M, Lefebvre F, Ben Nasr M (2015) Synthesis, crystal structure and characterization of a new organic-inorganic hybrid material: [C6H16N2O]SbCl5. J Mol Struct 1087:26–32CrossRefGoogle Scholar
  26. 26.
    Bator G, Jakubas R, Baran J (2007) Vibrational study of the structural phase transitions in 4-aminopyridinium tetrachloroantimonate (III) (4-APCA) ferroelectric crystal by infrared spectroscopy. J Vibrational Spectro 45:36–45CrossRefGoogle Scholar
  27. 27.
    Płowas I, Batora G, Jakubasa R, Baranb J (2012) Thermal, dielectric and vibrational properties of allylammonium chloroantimonates(III) and chlorobismuthates(III): [C3H5NH3]3[BiCl6] and [C3H5NH3]3[SbCl5].Cl. J Vibrational Spectro 62:121–132CrossRefGoogle Scholar
  28. 28.
    Wojtas M, Jakubas R, Baran J (2005) Vibrational study of the ferroelastic phase transition in [(CH3)4P]3[Bi2Cl9] and [(CH3)4P]3[Bi2Br9]. J Vibrational Spectro 39:23–30CrossRefGoogle Scholar
  29. 29.
    Hajlaoui S, Chaabane I, Oueslati A, Guidara K, Bulou A (2014) A theoretical study on the molecular structure and vibrational (FT-IR and Raman) spectra of new organic–inorganic compound [N(C3H7)4]2SnCl6. J Spectrochim Acta A Mol Biomol Spectro 117:225–233CrossRefGoogle Scholar
  30. 30.
    Weslati N, Chaabane I, Hlel F (2014) A theoretical study on the molecular structure and vibrational (FT-IR and Raman) spectra of a new organic-inorganic compound of 2[N(C3H7)4]SbCl4. J Vibrational Spectro 73:116–126CrossRefGoogle Scholar
  31. 31.
    Nobre MAL, Lanfredi S (2001) New evidence of grain boundary phenomenon in Zn7 Sb2 O12 ceramic: an analysis by impedance spectroscopy. Mater Lett 50:322–327CrossRefGoogle Scholar
  32. 32.
    Nobre MAL, Lanfredi S (2001) Effects of metals on the structure of heat-treated sol-gel SiO2 glasses. J Phys Chem Solids 62:1999–2094CrossRefGoogle Scholar
  33. 33.
    Nobre MAL, Lanfredi S (2001) Dielectric properties of Bi3 Zn2 Sb3 O14 ceramics at high temperature. Mater Lett 47:362–366CrossRefGoogle Scholar
  34. 34.
    Jonscher AK (1977) The ‘universal’ dielectric response. Nature 276:673–679CrossRefGoogle Scholar
  35. 35.
    Hassib H, Abdel Razik A (2008) Dielectric properties and AC conduction mechanism for 5, 7-dihydroxy-6-formyl-2-methylbenzo-pyran-4-one bis-schiff base. J Solid State Commun 147:345–349CrossRefGoogle Scholar
  36. 36.
    Long AR (1982) Frequency-dependent loss in amorphous semiconductors. J Adv Phys 31:553–637CrossRefGoogle Scholar
  37. 37.
    Pollak M (1971) On the frequency dependence of conductivity in amorphous solids. Phil Mag 23:519–542CrossRefGoogle Scholar
  38. 38.
    Ghosh A (1990) Transport properties of vanadium germanate glassy semiconductors. J Phys Rev B 42:5665–5676CrossRefGoogle Scholar
  39. 39.
    Pike GE (1972) Ac conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B 6:1572–1580CrossRefGoogle Scholar
  40. 40.
    Elliott SR (1987) A c conduction in amorphous chalcogenide and pnictide semiconductors. Adv Physiol Educ 36:135–217Google Scholar
  41. 41.
    Mansour SA, Yahia IS, Yakuphanoglu F (2010) The electrical conductivity and dielectric properties of C I basic violet 10. Dyes Pigment 87:144–148CrossRefGoogle Scholar
  42. 42.
    Chaudhuri BK, Chaudhuri K, Som KK (1989) Concentration and frequency dependences of a C conductivity and dielectric constant of iron-bismuth oxide glasses—II. J Phys Chem Solids 50:1149–1155CrossRefGoogle Scholar
  43. 43.
    Kwan CK, Wei H (1981) Electrical transport in solids with particular reference to organic semiconductors. Pergamon Press, OxfordGoogle Scholar
  44. 44.
    Pant M, Kanchan DK, Gondaliya N (2009) Transport properties and relaxation studies in BaO substituted Ag2O–V2O5–TeO2 glass system. J Mater Chem Phys 115:98–104CrossRefGoogle Scholar
  45. 45.
    Cheruku R, Vijayan L, Govindaraj G (2012) Electrical relaxation studies of solution combustion synthesized nanocrystalline Li2NiZrO4 material. J Mater Sci Eng B 177:771–779CrossRefGoogle Scholar
  46. 46.
    Bergman R (2000) General susceptibility functions for relaxations in disordered systems. J Appl Phys 88:1356–1365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of spectroscopic characterization and optical materials, Faculty of SciencesUniversity of SfaxSfaxTunisia

Personalised recommendations