, Volume 25, Issue 7, pp 3189–3196 | Cite as

Effect of P[MPEGMA-IL] on morphological evolution and conductivity behavior of PLA/PCL blends

  • Ping Wang
  • Yiyang Zhou
  • Pei XuEmail author
  • Yunsheng Ding
Original Paper


Dielectric relaxation spectroscopy (DRS) was used to investigate the effect of morphological evolution on conductivity behavior of PLA/PCL blends containing P[MPEGMA-IL]. The morphology of blends changes from sea-island morphology into co-continuous morphology with increasing P[MPEGMA-IL] content. P[MEPGMA-IL] could mainly localize in PCL domains and expand to the interface layer between the PLA and PCL phase because of the low viscosity of PCL phase and the high affinity of MEPGMA groups for both polymer phases. The dielectric results were discussed in terms of α relaxation that corresponds to normal and segmental mode movement, interfacial polarization that corresponds to interfacial aggregation of charge carriers, and ac conductivity that originates from conductive network of mobile charge carriers. Co-continuous morphology and high ions concentration lead to the enhancement of segment movement and ion conductive channel in PCL phase, which correspond to high conductivity and low activation energy of PLA/PCL/8P[MEGMA-IL] blend.


Blend Ionic liquid Morphological evolution Dielectric properties 


Funding information

This research was supported by the National Natural Science Foundation of China (51603060) and the Fundamental Research Funds for the Central Universities (JD2016JGPY0001).


  1. 1.
    Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRefGoogle Scholar
  2. 2.
    Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Random poly(butylene succinate-co-lactic acid) as a multifunctional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 105:1–9CrossRefGoogle Scholar
  3. 3.
    Finotti PFM, Costa LC, Chinelatto MA (2016) Effect of the chemical structure of compatibilizers on the thermal, mechanical and morphological properties of immiscible PLA/PCL blends. Macromol Symp 368:24–29CrossRefGoogle Scholar
  4. 4.
    Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Inter 4(6):3091–3101CrossRefGoogle Scholar
  5. 5.
    Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501CrossRefGoogle Scholar
  6. 6.
    Forouharshad M, Gardella L, Furfaro D, Galimberti M, Monticelli O (2015) A low-environmental-impact approach for novel biocomposites based on PLLA/PCL blends and high surface area graphite. Eur Polym J 70:28–36CrossRefGoogle Scholar
  7. 7.
    Lai SM, Liu YH, Huang CT, Don TM (2017) Miscibility and toughness improvement of poly(lactic acid)/poly(3-hydroxybutyrate) blends using a melt-induced degradation approach. J Polym Res 24:102CrossRefGoogle Scholar
  8. 8.
    Chavalitpanya K, Phattanarudee S (2013) Poly(lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia 34:542–548CrossRefGoogle Scholar
  9. 9.
    Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504CrossRefGoogle Scholar
  10. 10.
    Lopez-Rodriguez N, Lopez-Arraiza A, Meaurio E, Sarasua JR (2006) Crystallization, morphology, and mechanical behavior of polylactide/poly(epsilon-caprolactone) blends. Polym Eng Sci 46(9):1299–1308CrossRefGoogle Scholar
  11. 11.
    Lv QL, Wu DF, Xie H, Peng S, Chen Y, Xu CJ (2016) Crystallization of poly(ε-caprolactone) in its immiscible blend with polylactide: insight into the role of annealing histories. RSC Adv 6(44):37721–37730CrossRefGoogle Scholar
  12. 12.
    Issaadi K, Habi A, Grohens Y, Pillin I (2015) Effect of the montmorillonite intercalant and anhydride maleic grafting on polylactic acid structure and properties. Appl Clay Sci 107:62–69CrossRefGoogle Scholar
  13. 13.
    Issaadi K, Habi A, Grohens Y, Pillin I (2016) Maleic anhydride-grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/graphene oxide nanocomposites. Polym Bull 73:2057–2071CrossRefGoogle Scholar
  14. 14.
    Zhang C, Zhai TL, Turng LS, Dan Y (2015) Morphological, mechanical, and crystallization behavior of polylactide/polycaprolactone blends compatibilized by L-lactide/caprolactone copolymer. Ind Eng Chem Res 54(38):9505–9511CrossRefGoogle Scholar
  15. 15.
    Jeon O, Lee SH, Kim SH, Lee YM, Kim YH (2003) Synthesis and characterization of poly(l-lactide)-poly(ε-caprolactone) multiblock copolymers. Macromolecules 36(15):5585–5592CrossRefGoogle Scholar
  16. 16.
    Peponi L, Navarro-Baena I, Báez JE, Kenny JM, Marcos-Fernández A (2012) Effect of the molecular weight on the crystallinity of PCL-b-PLLA di-block copolymers. Polymer 53(21):4561–4568CrossRefGoogle Scholar
  17. 17.
    Zeng J-B, Li K-A (2015) Compatibilization strategies in poly (lactic acid)-based blends. RSC Adv 5(41):32546–32565CrossRefGoogle Scholar
  18. 18.
    Odent J, Leclère P, Raquez JM, Dubois P (2013) Toughening of polylactide by tailoring phase-morphology with P [CL-co-LA] random copolyesters as biodegradable impact modifiers. Eur Polym J 49(4):914–922CrossRefGoogle Scholar
  19. 19.
    Odent J, Habibi Y, Raquez JM, Dubois P (2013) Ultra-tough polylactide-based materials synergistically designed in the presence of rubbery ε-caprolactone-based copolyester and silica nanoparticles. Compos Sci Technol 84:86–91CrossRefGoogle Scholar
  20. 20.
    Wu DF, Zhang YS, Zhang M, Zhou W (2008) Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. Eur Polym J 44(7):2171–2183CrossRefGoogle Scholar
  21. 21.
    Wu DF, Lin DP, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Lin B (2011) Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys 212(6):613–626CrossRefGoogle Scholar
  22. 22.
    Laredo E, Grimau M, Bello A, Wu DF, Zhang YS, Lin DP (2010) AC conductivity of selectively located carbon nanotubes in poly(ε-caprolactone)/polylactide blend nanocomposites. Biomacromolecules 11(5):1339–1347CrossRefGoogle Scholar
  23. 23.
    Wang P, Xu P, Wei HB, Fang HG, Ding YS (2018) Effect of block copolymer containing ionic liquid moiety on interfacial polarization in PLA/PCL blends. J Appl Polym Sci 135(16):46161CrossRefGoogle Scholar
  24. 24.
    Singh MP, Singh RK, Chandra S (2014) Ionic liquids confined in porous matrices: physicochemical properties and applications. Prog Mater Sci 64(10):73–120CrossRefGoogle Scholar
  25. 25.
    Park K, Ha JU, Xanthos M (2010) Ionic liquids as plasticizers/lubricants for polylactic acid. Polym Eng Sci 50:1105–1110CrossRefGoogle Scholar
  26. 26.
    Park KI, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94(5):834–844CrossRefGoogle Scholar
  27. 27.
    Leroy E, Jacquet P, Coativy G, Reguerre AL, Lourdin D (2012) Compatibilization of starch-zein melt processed blends by an ionic liquid used as plasticizer. Carbohydr Polym 89(3):955–963CrossRefGoogle Scholar
  28. 28.
    Yousfi M, Livi S, Duchet-Rumeau J (2014) Ionic liquids: a new way for the compatibilization of thermoplastic blends. Chem Eng J 255(6):513–524CrossRefGoogle Scholar
  29. 29.
    Megevand B, Pruvost S, Lins LC, Livi S, Gérard JF, Duchet-Rumeau J (2016) Probing nanomechanical properties with AFM to understand the structure and behavior of polymer blends compatibilized with ionic liquids. RSC Adv 6(98):96421–96430CrossRefGoogle Scholar
  30. 30.
    Wang P, Zhang D, Zhou YY, Li Y, Fang HG, Wei HB, Ding YS (2018) A well-defined biodegradable 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer: facile synthesis and its compatibilization for PLA/PCL blends. Ionics 24(3):787–795CrossRefGoogle Scholar
  31. 31.
    Corrales TP, Laroze D, Zardalidis G, Floudas G, Butt HJ, Kappl M (2013) Dynamic heterogeneity and phase separation kinetics in miscible poly(vinyl acetate)/poly(ethylene oxide) blends by local dielectric spectroscopy. Macromolecules 46(18):7458–7464CrossRefGoogle Scholar
  32. 32.
    Ren JD, Adachi K (2003) Dielectric relaxation in blends of amorphous poly(DL-lactic acid) and semicrystalline poly(L-lactic acid). Macromolecules 36(36):5180–5186CrossRefGoogle Scholar
  33. 33.
    Bharati A, Wübbenhorst M, Moldenaers P, Cardinaels R (2016) Effect of compatibilization on interfacial polarization and intrinsic length scales in biphasic polymer blends of PαMSAN and PMMA: a combined experimental and modeling dielectric study. Macromolecules 49(4):1464–1478CrossRefGoogle Scholar
  34. 34.
    Xu P, Gui H, Yang S, Ding Y (2014) Dielectric and conductivity properties of poly(L-lactide) and poly(L-lactide)/ionic liquid blends. Macromol Res 22(3):304–309CrossRefGoogle Scholar
  35. 35.
    Calandrelli L, Calarco A, Laurienzo P, Malinconico M, Petillo O, Peluso G (2008) Compatibilized polymer blends based on PDLLA and PCL for application in bioartificial liver. Biomacromolecules 9(6):1527–1534CrossRefGoogle Scholar
  36. 36.
    Noroozi N, Schafer LL, Hatzikiriakos SG (2012) Thermorheological properties of poly (ε-caprolactone)/polylactide blends. Polym Eng Sci 52(11):2348–2359CrossRefGoogle Scholar
  37. 37.
    Laoutid F, François D, Paint Y, Bonnaud L, Dubois P (2013) Using nanosilica to fine-tune morphology and properties of polyamide 6/poly(propylene) blends. Macromol Mater Eng 298(3):328–338CrossRefGoogle Scholar
  38. 38.
    Brás AR, Viciosa MT, Wang YM, Dionísio M, Mano JF (2006) Crystallization of poly(L-lactic acid) probed with dielectric relaxation spectroscopy. Macromolecules 39(19):6513–6520CrossRefGoogle Scholar
  39. 39.
    Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370CrossRefGoogle Scholar
  40. 40.
    Starkweather HW, Peter A (1992) Conductivity and the electric modulus in polymers. J Polym Sci Polym Phys 30:637–641CrossRefGoogle Scholar
  41. 41.
    Mudarra M, Diaz-Calleja R, Belana J, Canadas JC, Diego JA, Sellares J, Sanchis MJ (2004) Sublinear dispersive conductivity in polymethyl methacrylate at temperatures above the glass transition. Polymer 45(8):2737–2742CrossRefGoogle Scholar
  42. 42.
    Ye YS, Sharick S, Davis EM, Winey KI, Elabd YA (2013) High hydroxide conductivity in polymerized ionic liquid block copolymers. ACS Macro Lett 2(7):575–580CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ping Wang
    • 1
    • 2
  • Yiyang Zhou
    • 1
  • Pei Xu
    • 1
    Email author
  • Yunsheng Ding
    • 1
  1. 1.Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and DevicesHefei University of TechnologyHefeiChina
  2. 2.School of Materials and Chemical EngineeringAnhui Jianzhu UniversityHefeiChina

Personalised recommendations