Advertisement

Ionics

, Volume 25, Issue 7, pp 2997–3007 | Cite as

Low-cost synthesis of LiMn0.7Fe0.3PO4/C cathode materials with Fe2O3 and Mn3O4 via two-step solid-state reaction for lithium-ion battery

  • Liwei An
  • Zhenfei Li
  • Xin Ren
  • Li Wang
  • Guangchuan LiangEmail author
Original Paper
  • 56 Downloads

Abstract

In this study, LiMn0.7Fe0.3PO4/C composite materials have been synthesized from a low-cost Fe2O3 and Mn3O4 precursor via a two-step solid-state reaction by spray drying process. The as-prepared LiMn0.7Fe0.3PO4/C provides enhanced discharge capacity and low-temperature performance compared to LiMn0.7Fe0.3PO4/C synthesized by a one-step solid-state method with the same precursors. Thus, the method to be described herein is a promising option in the search to reduce the cost of large-scale synthesis of LiMn0.7Fe0.3PO4/C for use in lithium-ion batteries, while maintaining adequate electrochemical performance.

Keywords

LiMn0.7Fe0.3PO4/C composite materials Low cost Two-step solid-state reaction Spray dry Discharge capacity 

Notes

Funding information

The authors received financial support for this work from the Natural Science Foundation of Hebei Province (Grant number E2015202356).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhou Y, Gu C, Zhou J, Cheng L, Liu W, Qiao Y, Wang X, Tu J (2011) Effect of carbon coating on low temperature electrochemical performance of LiFePO4/C by using polystyrene sphere as carbon source. Electrochim Acta 56:5054–5059.  https://doi.org/10.1016/j.electacta.2011.03.091 CrossRefGoogle Scholar
  2. 2.
    Gong CL, Xue ZG, Wen S, Ye YS, Xie XL (2016) Advanced carbon materials/olivine LiFePO4, composites cathode for lithium ion batteries. J Power Sources 318:93–112.  https://doi.org/10.1016/j.jpowsour.2016.04.008 CrossRefGoogle Scholar
  3. 3.
    Sun YK, Oh SM, Park HK, Scrosati B (2011) Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv Mater 23:5050–5054.  https://doi.org/10.1002/adma.201102497 CrossRefGoogle Scholar
  4. 4.
    Kim MS, Jegal JP, Roh KC, Kim KB (2014) Synthesis of LiMn0.75Fe0.25PO4/C microspheres using a microwave-assisted process with a complexing agent for high-rate lithium ion batteries. J Mater Chem A 2:10607–10613CrossRefGoogle Scholar
  5. 5.
    Liu W, Gao P, Mi Y, Chen J, Zhou H, Zhang X (2013) Fabrication of high tap density LiFe0.6Mn0.4PO4/C microspheres by a double carbon coating–spray drying method for high rate lithium ion batteries. J Mater Chem A 1:2411–2417CrossRefGoogle Scholar
  6. 6.
    Huang YP, Tao T, Chen Z, Han W, Wu Y, Kuang C, Zhou S, Chen Y (2014) Excellent electrochemical performance of LiFe0.4Mn0.6PO4 microspheres produced using a double carbon coating process. J Mater Chem A 2:18831.  https://doi.org/10.1039/C4TA03994G CrossRefGoogle Scholar
  7. 7.
    Oh SM, Myung ST, Park JB, Scrosati B, Amine K, Sun YK (2012) Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable Lithium batteries. Angew Chem Int Ed 51:1853.  https://doi.org/10.1002/anie.201107394 CrossRefGoogle Scholar
  8. 8.
    Saravanan K, Balaya P, Reddy MV, Chowdari BVR, Vittal JJ (2010) Morphology controlled synthesis of LiFePO4/C nanoplates for li-ion batteries. Energy Environ Sci 3:457–464.  https://doi.org/10.1039/B923576K CrossRefGoogle Scholar
  9. 9.
    Kim TH, Park HS, Lee MH, Lee SY, Song HK (2012) Restricted growth of LiMnPO4, nanoparticles evolved from a precursor seed. J Power Sources 210:1–6.  https://doi.org/10.1016/j.jpowsour.2012.02.078 CrossRefGoogle Scholar
  10. 10.
    Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148:45–51.  https://doi.org/10.1016/S0167-2738(02)00134-0 CrossRefGoogle Scholar
  11. 11.
    Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J Power Sources 159:717–720.  https://doi.org/10.1016/j.jpowsour.2005.10.098 CrossRefGoogle Scholar
  12. 12.
    Yang CC, Jang JH, Jiang JR (2016) Study of electrochemical performances of lithium titanium oxide–coated LiFePO4/C cathode composite at low and high temperatures. Appl Energ 162:1419–1427.  https://doi.org/10.1016/j.apenergy.2015.01.131 CrossRefGoogle Scholar
  13. 13.
    Yuan H, Wang XY, Wu Q, Shu HB, Yang XK (2016) Effects of Ni and Mn doping on physicochemical and electrochemical performances of LiFePO4/C. J Alloy Compd 675:187–194.  https://doi.org/10.1016/j.jallcom.2016.03.065 CrossRefGoogle Scholar
  14. 14.
    Meng XD, Han B, Wang YF, Nan JY (2015) Effects of samarium doping on the electrochemical performance of LiFePO4/C cathode material for lithium-ion batteries. Ceram Int 42:482–489.  https://doi.org/10.1016/j.ceramint.2015.10.063 Google Scholar
  15. 15.
    Guo XF, Zhan H, Zhou YH (2009) Rapid synthesis of LiFePO4/C composite by microwave method. Solid State Ionics 180:386–391.  https://doi.org/10.1016/j.ssi.2008.11.021 CrossRefGoogle Scholar
  16. 16.
    Morales J, Trócoli R, Rodríguez-Castellón E, Franger S, Santos-Peña J (2009) Effect of C and Au additives produced by simple coaters on the surface and the electrochemical properties of nanosized LiFePO4/C. Electroanal Chem 631:29–35.  https://doi.org/10.1016/j.jelechem.2009.03.006 CrossRefGoogle Scholar
  17. 17.
    Wei W, Chen DZ, Wang RN, Gou L (2012) Hierarchical LiFePO4/C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries. Nanotechnology 23:5296–5296.  https://doi.org/10.1088/0957-4484/23/47/475401 Google Scholar
  18. 18.
    Wang JJ, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185.  https://doi.org/10.1039/C1EE01263K CrossRefGoogle Scholar
  19. 19.
    Liu Y, Liu H, An L, Zhao X, Liang G (2018) Blended spherical lithium iron phosphate cathodes for high energy density lithium–ion batteries. Ionics 25:1–9.  https://doi.org/10.1007/s11581-018-2566-7 Google Scholar
  20. 20.
    Dominko R, Goupil JM, Bele M, Gaberscek M, Remskar M, Hanzel D, Jamnik J (2004) Impact of LiFePO4∕C composites porosity on their electrochemical performance. J Electrochem Soc 152:A858–A863.  https://doi.org/10.1149/1.1872674 CrossRefGoogle Scholar
  21. 21.
    Shima Y, Nakamura T, Matsui H, Yamada Y, Miyauchi H, Hashimoto S, Abe K (2010) Synthesis of LiFePO4∕C composite particles by gas–solid phase reaction and their electrochemical properties. J Jpn Soc of Powder Powder Metall 157:A544–A549.  https://doi.org/10.2497/jjspm.57.729 Google Scholar
  22. 22.
    Zhao NN, Li YS, Zhao XK, Zhi X, Liang G (2016) Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material. J Alloy Compd 683:123–132.  https://doi.org/10.1016/j.jallcom.2016.04.070 CrossRefGoogle Scholar
  23. 23.
    Cao YB, Duan JG, Hu GR, Jiang F, Peng Z, du K, Guo H (2013) Synthesis and electrochemical performance of nanostructured LiMnPO4/C composites as lithium-ion battery cathode by a precipitation technique. Electrochim Acta 98:183–189.  https://doi.org/10.1016/j.electacta.2013.03.014 CrossRefGoogle Scholar
  24. 24.
    Sinha NN, Munichandraiah N (2010) Single-shot preparation of crystalline nanoplate LiFePO4 by a simple polyol route. Rev Espa Cardiol 157:A824–A829.  https://doi.org/10.1149/1.3425730 Google Scholar
  25. 25.
    Zhang Y, Wang W, Li P, Fu Y, Ma X (2012) A simple solvothermal route to synthesize graphene-modified LiFePO4 cathode for high power lithium ion batteries. J Power Sources 210:47–53.  https://doi.org/10.1016/j.jpowsour.2012.03.007 CrossRefGoogle Scholar
  26. 26.
    Aravindan V, Gnanaraj J, Lee YS, Madhavi S (2013) LiMnPO4–a next (2013) generation cathode material for lithium-ion batteries. J Mater Chem 1:3518–3539CrossRefGoogle Scholar
  27. 27.
    Jo M, Yoo HC, Jung YS, Cho J (2012) Carbon-coated nanoclustered LiMn0.71Fe0.29PO4 cathode for lithium-ion batteries. J Power Sources 216:162–168CrossRefGoogle Scholar
  28. 28.
    Zuo PJ, Cheng GY, Wang LG, Ma YL, Du CY, Cheng XQ, Wang ZB, Yin GP (2013) Ascorbic acid-assisted solvothermal synthesis of LiMn0.9Fe0.1PO4/C nanoplatelets with enhanced electrochemical performance for lithium ion batteries. J Power Sources 243:872–879CrossRefGoogle Scholar
  29. 29.
    Li C, Yuan YQ, Feng X, Li MW (2012) Enhanced electrochemical properties of LiFe1-xMnxPO4/C composites synthesized from FePO4·2H2O nanocrystallites. J Power Sources 214:344–350CrossRefGoogle Scholar
  30. 30.
    Yang W, Bi Y, Qin Y, Liu Y, Zhang X, Yang B, Wu Q, Wang D, Shi S (2015) LiMn0.8Fe0.2PO4/C cathode material synthesized via co-precipitation method with superior high-rate and low-temperature performances for lithium-ion batteries. J Power Sources 275:785–791CrossRefGoogle Scholar
  31. 31.
    Zhou X, Deng YF, Wan LN, Qin XS, Chen GH (2014) A surfactant-assisted synthesis route for scalable preparation of high performance of LiFe0.15Mn0.85PO4/C cathode using bimetallic precursor. J Power Sources 265:223–230CrossRefGoogle Scholar
  32. 32.
    Mi YY, Gao P, Liu W, Zhang WD, Zhou HH (2014) Carbon nanotube-loaded mesoporous LiFe0.6Mn0.4PO4/C microspheres as high performance cathodes for lithium-ion batteries. J Power Sources 267:459–468CrossRefGoogle Scholar
  33. 33.
    Kim MS, Lee GW, Lee SW, Jeong JH, Mhamane D, Roh KC, Kim KB (2017) Synthesis of LiFePO4/graphene microspheres while avoiding restacking of graphene sheet’s for high-rate lithium-ion batteries. J Ind Eng Chem 52:251–259CrossRefGoogle Scholar
  34. 34.
    Zhang JF, Zheng JC, Peng CL, Wang XW, Yuan XB, Li H, Chen GM (2014) Synthesis and performances of LiFePO4-Li3V2(PO4)3/C cathode materials via spray drying method with double carbon sources. J Power Sources 267:227–234CrossRefGoogle Scholar
  35. 35.
    Wu Y, Wen Z, Feng H, Li J (2013) Sucrose-assisted loading of LiFePO4 nanoparticles on graphene for high-performance lithium-ion battery cathodes. Chem Eur J 19:5631–5636.  https://doi.org/10.1002/chem.201203535 CrossRefGoogle Scholar
  36. 36.
    Liao XZ, Ma ZF, He YS, Zhang XM, Wang L, Jiang Y (2005) Electrochemical behavior of LiFePO4/C cathode material for rechargeable lithium batteries. J Electrochem Soc 152:A1969–A1973.  https://doi.org/10.1149/1.2008988 CrossRefGoogle Scholar
  37. 37.
    Pei B, Yao H, Zhang W, Yang Z (2012) Hydrothermal synthesis of morphology-controlled LiFePO4, cathode material for lithium-ion batteries. J Power Sources 220:317–323.  https://doi.org/10.1016/j.jpowsour.2012.07.128 CrossRefGoogle Scholar
  38. 38.
    Wang Y, Zhang D, Chang C, Lin D, Huang K (2014) Controllable growth of LiFePO4, microplates of (010) and (001) lattice planes for li ion batteries: a case of the growth manner on the li ion diffusion coefficient and electrochemical performance. Mater Chem Phys 148:933–939.  https://doi.org/10.1016/j.matchemphys.2014.08.071 CrossRefGoogle Scholar
  39. 39.
    Uchaker E, Cao G (2014) Mesocrystals as electrode materials for lithium-ion batteries. Nano Today 9:499–524.  https://doi.org/10.1016/j.nantod.2014.06.004 CrossRefGoogle Scholar
  40. 40.
    Park KY, Park I, Kim H, Lim H, Hong J, Kim J, Kang K (2014) Anti-site reordering in LiFePO4: defect annihilation on charge carrier injection. Chem Mater 26:5345–5351.  https://doi.org/10.1021/cm502432q CrossRefGoogle Scholar
  41. 41.
    Yang XH, Mi YY, Zhang WD, Wu BR, Zhou HH (2015) Enhanced electrochemical performance of LiFe0.6Mn0.4PO4/C cathode material prepared by ferrocene-assisted calcination process. J Power Sources 275:823–830.  https://doi.org/10.1016/j.jpowsour.2014.11.080 CrossRefGoogle Scholar
  42. 42.
    Lei X, Zhang H, Chen Y, Wang W, Ye Y, Zheng C, Deng P, Shi Z (2015) A three-dimensional LiFePO4/carbon nanotubes/graphene composite as a cathode material for lithium-ion batteries with superior high-rate performance. J Alloys Compd 626:280–286.  https://doi.org/10.1016/j.jallcom.2014.09.169 CrossRefGoogle Scholar
  43. 43.
    Wu L, Zhou SK, Liu JQ, Lv F, Wan F (2012) High tap-density and high performance LiFePO4/C cathode material synthesized by the combined sol spary-drying and liquid nitrogen quenching method. Mater Lett 5:32–35.  https://doi.org/10.1016/j.matlet.2012.08.076 CrossRefGoogle Scholar
  44. 44.
    Huang QY, Wu Z, Su J, Long YF, Lv XY, Wen YX (2016) Synthesis and electrochemical performance of Ti–Fe co-doped LiMnPO4 /C as cathode material for lithium-ion batteries. Ceram Int 42:11348–11354.  https://doi.org/10.1016/j.ceramint.2016.04.057 CrossRefGoogle Scholar
  45. 45.
    Yang S, Zavalij PY, Whittingham MS (2001) Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem Commun 3:505–508.  https://doi.org/10.1016/S1388-2481(01)00200-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Liwei An
    • 1
  • Zhenfei Li
    • 1
  • Xin Ren
    • 1
  • Li Wang
    • 1
    • 2
    • 3
  • Guangchuan Liang
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Power Source and Ecomaterials ScienceHebei University of TechnologyTianjinChina
  2. 2.Key Laboratory of Special Functional Materials for Ecological Environment and Information, Ministry of EducationHebei University of TechnologyTianjinChina
  3. 3.Key Laboratory for New Type of Functional Materials in Hebei ProvinceHebei University of TechnologyTianjinChina

Personalised recommendations