Advertisement

Ionics

pp 1–6 | Cite as

The detection of NH3 with M&B40 (M = Be, Mg) clusters

  • Xiyuan SunEmail author
  • Saisai Cheng
  • Xing Feng
Original Paper
  • 11 Downloads

Abstract

The M&B40 (M = Be, Mg) clusters as a potential sensor for NH3 pollutant detection were investigated with density functional theory (DFT) calculations. The considerable adsorption energy and charge transfers suggest the chemisorption between the M&B40 (M = Be, Mg) and NH3 molecule. The strong interaction between M&B40 (M = Be, Mg) and NH3 molecule is derived from the direct orbital overlaps between M and N atoms in NH3 molecule. According to the magnitude order of the variation of electrical conductivity, we found that Mg&B40 cluster is more feasible as a promising sensor for NH3 pollutant than Be&B40 cluster.

Keywords

Be&B40 and Mg&B40 clusters DFT NH3 Gas sensor 

Notes

Funding information

This work is supported by the Project of Education Department in Sichuan Province (No. 15ZB0006).

References

  1. 1.
    Yun SH, Wu ZI, Dibos A, Zou XD, Karlsson UO (2006) Self-assembled boron nanowire Y-junctions. Nano Lett 6:385–389CrossRefGoogle Scholar
  2. 2.
    Sivaev IB, Bregadze VV (2009) Polyhedral boranes for medical applications: current status and perspectives. Eur J Inorg Chem 11:1433–1450CrossRefGoogle Scholar
  3. 3.
    Hawthorne MF (1991) Biochemical applications of boron cluster chemistry. Appl Chem 63:327–334CrossRefGoogle Scholar
  4. 4.
    Yoosefian M, Etminan N, Zeraati Moghani M, Mirzaei S, Abbasi S (2016) The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants. Superlattice Microst 98:325–331CrossRefGoogle Scholar
  5. 5.
    Cheng LJ (2012) B14: an all-boron fullerene. J Chem Phys 136:104301CrossRefGoogle Scholar
  6. 6.
    Wang L, Zhao JJ, Li FY, Chen ZF (2010) Boron fullerenes with 32–56 atoms: irregular cage configurations and electronic properties. Chem Phys Lett 501:16–19CrossRefGoogle Scholar
  7. 7.
    Szwacki NG, Sadrzadeh A, Yakobson BI (2007) B80 Fullerene: an Ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett 98:166804CrossRefGoogle Scholar
  8. 8.
    Muya JT, Gopakumar G, Nguyen MT, Ceulemans A (2011) The leapfrog principle for boron fullerenes: a theoretical study of structure and stability of B112. Phys Chem Chem Phys 13:7524–7533CrossRefGoogle Scholar
  9. 9.
    De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S (2011) Energy landscape of fullerene materials: a comparison of boron to boron nitride and carbon. Phys Rev Lett 106:225502–225505CrossRefGoogle Scholar
  10. 10.
    Zhao JJ, Wang L, Li FY, Chen ZF (2010) B80 and other medium-sized boron clusters: core−shell structures, not hollow cages. J Phys Chem A 114:9969–9972CrossRefGoogle Scholar
  11. 11.
    Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Observation of an all-boron fullerene. Nat Chem 6:727–731CrossRefGoogle Scholar
  12. 12.
    Dong HL, Lin B, Gilmore K, Hou TJ, Lee ST, Li YY (2015) B40 fullerene: an efficient material for CO2 capture, storage and separation. Curr Appl Chem 15:1084–1089Google Scholar
  13. 13.
    Maniei Z, Shakerzadeh E, Mahdavifar Z (2018) Theoretical approach into potential possibility of efficient NO2 detection via B40 and Li@B40 fullerenes. Chem Phys Lett 691:360–365CrossRefGoogle Scholar
  14. 14.
    Moradi M, Vahabi V, Bodaghi A (2016) Computational study on the fullerene-like B 40 borospherene properties and its interaction with ammonia. J Mol Liq 223:315–320CrossRefGoogle Scholar
  15. 15.
    Lin B, Dong HL, Du CM, Hou TJ, Lin HP, Li YY (2016) B40 fullerene as a highly sensitive molecular device for NH3 detection at low bias: a first-principles study. Nanotechnology 27:075501CrossRefGoogle Scholar
  16. 16.
    An YP, Zhang MJ, Wu DP, Fu ZM, Wang TX, Xia CX (2016) Electronic transport properties of the first all-boron fullerene B40and its metallofullerene Sr@B40. Phys Chem Chem Phys 18:12024–12028CrossRefGoogle Scholar
  17. 17.
    Liu CS, Ye XJ, Wang XF, Yan XH (2016) Metalized B40 fullerene as a novel material for storage and optical detection of hydrogen: a first-principles study. RSC Adv 6:56907–56912CrossRefGoogle Scholar
  18. 18.
    Bai H, Bai B, Zhang L, Huang W, Mu YW, Zhai HJ, Li SD (2016) Lithium-decorated borospherene B40: a promising hydrogen storage medium. Sci Rep 6:35518CrossRefGoogle Scholar
  19. 19.
    Du JG, Sun XY, Zhang L, Zhang CY, Jiang G (2018) Hydrogen storage of Li4&B36 cluster. Sci Rep 8:1940CrossRefGoogle Scholar
  20. 20.
    Bai H, Chen Q, Zhai HJ, Li SD (2015) Endohedral and exohedral metalloborospherenes: M@B40(M=Ca, Sr) and M&B40(M=Be, Mg). Angew Chem Int Ed 54:941–945CrossRefGoogle Scholar
  21. 21.
    Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78CrossRefGoogle Scholar
  22. 22.
    Becke AD (1988) A multicenter numerical integration scheme for polyatomic molecules. J Chem Phys 88:2547–2553CrossRefGoogle Scholar
  23. 23.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  24. 24.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465CrossRefGoogle Scholar
  25. 25.
    Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  26. 26.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  27. 27.
    Kruse H, Grimme S (2012) A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J Chem Phys 136:154101CrossRefGoogle Scholar
  28. 28.
    Li SS (1993) Semiconductor physical electronics. Plenum Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceSichuan Agricultural UniversityYa’anPeople’s Republic of China
  2. 2.College of Life ScienceSichuan Agricultural UniversityYa’anPeople’s Republic of China

Personalised recommendations