, Volume 25, Issue 7, pp 3121–3127 | Cite as

Polypyrrole-coated loose network mesoporous carbon/sulfur composite for high-performance lithium-sulfur batteries

  • Haishen SongEmail author
  • Yijin Pan
  • Anping Tang
  • Guorong Xu
  • Lihua Liu
  • Hezhang Chen
Original Paper


Lithium-sulfur batteries have received a lot of attention for next-generation energy storage, however, low conductivity of the sulfur cathode and shuttle of polysulfides still limit the utilization of sulfur. In this work, a polypyrrole-coated loose network mesoporous carbon/sulfur composite (C/S@PPy) was designed. In this structure, the conductive networks of mesoporous carbon are perfect hosts to contain sulfur and enhance the conductivity of the cathode; the conductive polymer-coating layer further inhibits the lithium polysulfides from dissolution and migration in the electrolyte. Compared with C/S, the C/S@PPy composite exhibited an excellent rate capability and enhanced cyclic stability. An initial discharge capacity of 1209.6 mAh g−1 was achieved for the C/S@PPy electrode in the first cycle at 0.1 C, and capacity retention of 62.2% was obtained after 300 cycles at 0.2 C.


Lithium-sulfur batteries Polypyrrole Mesoporous carbon C/S composite Cycle stability 



This work was supported by the Natural Science Foundation of Hunan Province, China (2018JJ3176).


  1. 1.
    Zubi G, Dufo-López R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sust Energ Rev 89:292–308CrossRefGoogle Scholar
  2. 2.
    Shi CF, Xiang KX, Zhu YR, Chen XH, Zhou W, Chen H (2017) Preparation and electrochemical properties of nanocable-like Nb2O5/surface-modified carbon nanotubes composites for anode materials in lithium ion batteries. Electrochim Acta 246:1088–1096CrossRefGoogle Scholar
  3. 3.
    Goodenough JB, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196:6688–6694CrossRefGoogle Scholar
  4. 4.
    Huang Y, Zhang W, Li SB, Luo W, Huang ZM, Fang C, Weng MY, Zheng JX, Pan F, Liu QJ, Huang YH (2018) Activate metallic copper as high-capacity cathode for lithium-ion batteries via nanocomposite technology. Nano Energy 54:59–65CrossRefGoogle Scholar
  5. 5.
    Song HS, Cao Z, Chen X, Lu H, Jia M, Zhang ZA, Lai YQ, Li J, Liu YX (2012) Capacity fade of LiFePO4/graphite cell at elevated temperature. J Solid State Electrochem 17(3):599–605CrossRefGoogle Scholar
  6. 6.
    Ma L, Hendrickson KE, Wei SY, Archer LA (2015) Nanomaterials: science and applications in the lithium-sulfur battery. Nano Today 10:315–338CrossRefGoogle Scholar
  7. 7.
    Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134:18510–18513CrossRefGoogle Scholar
  8. 8.
    Zhang J, Li HQ, Lin ZW, Tang Q, Liang ZT, Tang P, Tong YW, Pan YY (2018) Preparation of mesoporous carbon for improved-performance lithium-sulfur battery. Ionics 24(4):1057–1064CrossRefGoogle Scholar
  9. 9.
    Gao B, Li XX, Ding K, Huang C, Li QW, Chu Paul K, Huo KF (2019) Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. J Mater Chem A 7:14–37CrossRefGoogle Scholar
  10. 10.
    Jin G, Zhang MG, Yan SJ, Yan XY, Wei SW (2018) Electrochemical properties of modified acetylene black/sulfur composite cathode material for lithium/sulfur batteries. Ionics 24(8):2219–2225CrossRefGoogle Scholar
  11. 11.
    Lang SY, Xiao RJ, Gu L, Guo YG, Wen R, Wan LJ (2018) Interfacial mechanism in lithium-sulfur batteries: how salts mediate the structure evolution and dynamics. J Am Chem Soc 140:8147–8155CrossRefGoogle Scholar
  12. 12.
    Yuan JJ, Zheng XK, Jiang L, Yao DC, He GY, Chen HQ, Che JF (2018) CNT-intercalated rGO/sulfur laminated structure for high-rate and long-life lithium-sulfur batteries. Mater Lett 219:68–71CrossRefGoogle Scholar
  13. 13.
    Zhou WD, Yu YC, Chen H, DiSalvo FJ, Abruña HD (2013) Yolk-Shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J Am Chem Soc 135:16736–16743CrossRefGoogle Scholar
  14. 14.
    Xing YL, Wang SB, Fang BZ, Song G, Wilkinson DP, Zhang SC (2018) N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries. J Power Sources 385:10–17CrossRefGoogle Scholar
  15. 15.
    Wang HQ, Zhang WC, Liu HK, Guo ZP (2016) A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries. Angew Chem Int Ed 55:3992–3996CrossRefGoogle Scholar
  16. 16.
    Li YY, Wang L, Gao B, Li XX, Cai QF, Li QW, Peng X, Huo KF, Chu PK (2017) Hierarchical porous carbon materials derived from self-template bamboo leaves for lithium-sulfur batteries. Electrochim Acta 229:352–360CrossRefGoogle Scholar
  17. 17.
    Zhang CW, Zhang Z, Wang DR, Yin FX, Zhang YG (2017) Three-dimensionally ordered macro−/mesoporous carbon loading sulfur as high-performance cathodes for lithium/sulfur batteries. J Alloy Compd 714:126–132CrossRefGoogle Scholar
  18. 18.
    Hagen M, Dörfler S, Fanz P, Berger T, Speck R, Tübke J, Althues H, Hoffmann MJ, Scherr C, Kaskel S (2013) Development and costs calculation of lithium-sulfur cells with high sulfur load and binder free electrodes. J Power Sources 224:260–268CrossRefGoogle Scholar
  19. 19.
    Zhang JW, Yang N, Yang XG, Li SJ, Yao JM, Cai YR (2015) Hollow sulfur@ graphene oxide core-shell composite for high performance Li-S batteries. J Alloy Compd 650:604–609CrossRefGoogle Scholar
  20. 20.
    Liu SK, Hong XB, Wang DQ, Li YJ, Xu J, Zheng CM, Xie K (2018) Hollow carbon spheres with nanoporous shells and tailored chemical interfaces as sulfur host for long cycle life of lithium sulfur batteries. Electrochim Acta 279:10–18CrossRefGoogle Scholar
  21. 21.
    Guo ZJ, Feng XY, Li XX, Zhang XM, Peng X, Song H, Fu JJ, Ding K, Huang X, Gao B (2018) Nitrogen doped carbon nanosheets encapsulated in situ generated sulfur enable high capacity and superior rate cathode for Li-S batteries. Front Chem 6:429CrossRefGoogle Scholar
  22. 22.
    Xu ZL, Kim JK, Kang K (2018) Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19:84–107CrossRefGoogle Scholar
  23. 23.
    Qin XY, Wu JX, Xu ZL, Chong WG, Huang JQ, Liang GM, Li BH, Kang FY, Kim JK (2019) Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. Carbon 141:16–24CrossRefGoogle Scholar
  24. 24.
    Ding ZW, Zhao DL, Yao RR, Li C, Cheng XW, Hu T (2018) Polyaniline@ spherical ordered mesoporous carbon/sulfur nanocomposites for high-performance lithium-sulfur batteries. Int J Hydrog Energy 43:10502–10510CrossRefGoogle Scholar
  25. 25.
    Yang W, Yang W, Feng JN, Qin XJ (2018) A polypyrrole-coated acetylene black/sulfur composite cathode material for lithium-sulfur batteries. J Energy Chem 27:813–819CrossRefGoogle Scholar
  26. 26.
    Ma GQ, Wen ZY, Jin J, Lu Y, Rui K, Wu XW, Wu MF, Zhang JC (2014) Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite. J Power Sources 254:353–359CrossRefGoogle Scholar
  27. 27.
    Liang X, Liu Y, Wen ZY, Huang LZ, Wang XY, Zhang H (2011) A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries. J Power Sources 196(16):6951–6955CrossRefGoogle Scholar
  28. 28.
    Ferrero GA, Sevilla M, Fuertes AB (2015) Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. Carbon 88:239–251CrossRefGoogle Scholar
  29. 29.
    Feng JN, Qin XJ, Ma ZP, Yang J, Yang W, Shao GJ (2016) A novel acetylene black/sulfur@ graphene composite cathode with unique three-dimensional sandwich structure for lithium-sulfur batteries. Electrochim Acta 190:426–433CrossRefGoogle Scholar
  30. 30.
    Chen AB, Li YT, Yu YF, Li YQ, Xia KC, Wang YY, Li SH, Zhang LS (2016) Synthesis of hollow mesoporous carbon spheres via “dissolution-capture” method for effective phenol adsorption. Carbon 103:157–162CrossRefGoogle Scholar
  31. 31.
    Mukkabla R, Meduri P, Deepa M, Shivaprasad SM, Ghosal P (2017) Sulfur enriched carbon nanotubols with a poly(3,4-ethylenedioxypyrrole) coating as cathodes for long-lasting Li-S batteries. J Power Sources 342:202–213CrossRefGoogle Scholar
  32. 32.
    Zhang YC, Sun K, Zhan L, Wang YL, Ling LC (2018) N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Appl Surf Sci 427:823–829CrossRefGoogle Scholar
  33. 33.
    Li XX, Ding K, Gao B, Li QW, Li YY, Fu JJ, Zhang XM, Chu Paul K, Huo KF (2017) Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano Energy 40:655–662CrossRefGoogle Scholar
  34. 34.
    Yin MJ, Song HS, Tang AP, Xu GR, Liu LH, Pan YJ (2018) Effect of carbon sources on morphologies and electrochemical properties of MoS2/carbon composites. Ionics.
  35. 35.
    Song HS, Tang AP, Xu GR, Liu LH, Pan YJ, Yin MJ (2018) Hydrothermal synthesis and electrochemical properties of MoS2/C nanocomposite. Int J Electrochem Sc 13(7):6708–6716CrossRefGoogle Scholar
  36. 36.
    Cai JJ, Wu C, Zhu Y, Zhang KL, Shen PK (2017) Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries. J Power Sources 341:165–174CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Haishen Song
    • 1
    • 2
    • 3
    Email author
  • Yijin Pan
    • 1
  • Anping Tang
    • 2
  • Guorong Xu
    • 1
  • Lihua Liu
    • 3
  • Hezhang Chen
    • 1
  1. 1.School of Chemistry and Chemical EngineeringHunan University of Science and TechnologyXiangtanChina
  2. 2.Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and ConversionXiangtanChina
  3. 3.Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPRXiangtanChina

Personalised recommendations