Advertisement

Ionics

pp 1–9 | Cite as

Iota-carrageenan-based polymer electrolyte: impact on ionic conductivity with incorporation of AmNTFSI ionic liquid for supercapacitor

  • N. K. Farhana
  • Fatin Saiha Omar
  • R. Shanti
  • Y. K. Mahipal
  • S. RameshEmail author
  • K. Ramesh
Original Paper
  • 22 Downloads

Abstract

Green solid polymer electrolytes have drawn attention as multifunctional electrolyte as compared to liquid electrolyte due to their flexibility membranes. In the present work, biodegradable iota-carrageenan polymer has been chosen as the host polymer with magnesium tri-fluromethanesulfonate (MgTf2) as the salt. The polymer film was incorporated with methyl-trioctylammonium bis(trifluoromethyl sulfonyl)imide (AmNTFSI) ionic liquid to amplify the ionic conductivity via adding mobile cations and tuning the crystallinity as well as the glass temperature of the polymer. Upon the incorporation of AmNTFSI, the ionic conductivity was remarkably augmented from (1.24 + 0.01) × 10−6 S cm−1 to the maximum value of (3.20 + 0.01) × 10−3 S cm−1 at room temperature. The thermal, structural, and temperature dependence conductivity measurements of polymer films (with and without AmNTFSI) have been analyzed, and the performance as the supercapacitor electrolytes has been evaluated.

Keywords

Iota-carrageenan Ionic conductivity Ionic liquid Electric double-layer capacitor Solution cast method 

Notes

Funding information

This work is financially supported by University of Malaya Research Grant (UMRG: RG382-17AFR). Authors would like to thank Collaborative Research in Engineering, Science & Technology Center (CREST) for their continuous support in this research (PV027-2018). A special thank you to ECLIMO SDN BHD too.

References

  1. 1.
    Chen GZ (2017) Supercapacitor and supercapattery as emerging electrochemical energy stores. Int Mater Rev 62(4):173–202CrossRefGoogle Scholar
  2. 2.
    Pandey GP, Kumar Y, Hashmi SA (2010) Ionic liquid incorporated polymer electrolytes for supercapacitor application. Indian J Chem 49:743–751 Google Scholar
  3. 3.
    Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950CrossRefGoogle Scholar
  4. 4.
    Srour H, Chancelier L, Bolimowska E et al (2016) Ionic liquid-based electrolytes for lithium-ion batteries: review of performances of various electrode systems. J Appl Electrochem 46(2):149–155CrossRefGoogle Scholar
  5. 5.
    González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206CrossRefGoogle Scholar
  6. 6.
    Shukur MF, Kadir MFZ (2015) Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165CrossRefGoogle Scholar
  7. 7.
    Kadir MFZ, Hamsan MH (2017) Green electrolytes based on dextran-chitosan blend and the effect of NH 4SCN as proton provider on the electrical response studies. Ionics 24(8):2379–2398CrossRefGoogle Scholar
  8. 8.
    Arof AK, Shuhaimi NEA, Alias NA, Kufian MZ, Majid SR (2010) Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). J Solid State Electrochem 14(12):2145–2152CrossRefGoogle Scholar
  9. 9.
    Jumaah FN, Mobarak NN, Ahmad A, Ghani MA, Rahman MYA (2015) Derivative of iota-carrageenan as solid polymer electrolyte. Ionics 21(5):1311–1320CrossRefGoogle Scholar
  10. 10.
    Yun-Sheng Y, John R, Bing-Joe H (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1(8):2719–2743CrossRefGoogle Scholar
  11. 11.
    Pandey S, Jana KK, Aswal VK, Rana D, Maiti P (2017) Effect of nanoparticle on the mechanical and gas barrier properties of thermoplastic polyurethane. Appl Clay Sci 146(March):468–474CrossRefGoogle Scholar
  12. 12.
    Na R, Su C, Su Y et al (2017) Solvent-free synthesis of an ionic liquid integrated ether-abundant polymer as a solid electrolyte for flexible electric double-layer capacitors. J Mater Chem A 5(37):19703–19713CrossRefGoogle Scholar
  13. 13.
    Wei D, Ng TW (2009) Application of novel room temperature ionic liquids in flexible supercapacitors. Electrochem Commun 11(10):1996–1999CrossRefGoogle Scholar
  14. 14.
    Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539CrossRefGoogle Scholar
  15. 15.
    Ramesh S, Uma O, Shanti R, et al (2014) Preparation and characterization of poly (ethyl methacrylate) based polymer electrolytes doped with 1-butyl-3-methylimidazolium trifluoromethanesulfonate. Measurement 48(1):263–273Google Scholar
  16. 16.
    Lee DK, Allcock HR (2010) The effects of cations and anions on the ionic conductivity of poly[bis(2-(2-methoxyethoxy)ethoxy)phosphazene] doped with lithium and magnesium salts of trifluoromethanesulfonate and bis(trifluoromethanesulfonyl)imidate. Solid State Ionics 181(39–40):1721–1726CrossRefGoogle Scholar
  17. 17.
    Chong MY, Liew CW, Numan A et al (2016) Effects of ionic liquid on the hydroxylpropylmethyl cellulose (HPMC) solid polymer electrolyte. Ionics 22(12):2421–2430CrossRefGoogle Scholar
  18. 18.
    Ng HM, Ramesh S, Ramesh K (2015) Exploration on the P(VP-co-VAc) copolymer based gel polymer electrolytes doped with quaternary ammonium iodide salt for DSSC applications: electrochemical behaviors and photovoltaic performances. Org Electron 22:132–139CrossRefGoogle Scholar
  19. 19.
    Ravi M, Bhavani S, Kiran Kumar K, Narasimaha Rao VVR (2013) Investigations on electrical properties of PVP:KIO4polymer electrolyte films. Solid State Sci 19:85–93CrossRefGoogle Scholar
  20. 20.
    Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481(October 2017):424–434CrossRefGoogle Scholar
  21. 21.
     Hambali D, Zainuddin Z, Supa’at I, Osman Z (2016) Studies of plastic crystal gel polymer electrolytes based on poly(vinylidene-chloride-co-acrylonitirile). In: AIP Conf Proc 1711:050004Google Scholar
  22. 22.
    Liew CW, Ramesh S, Arof AK (2014) Investigation of ionic liquid-based poly(vinyl alcohol) proton conductor for electrochemical double-layer capacitor. High Perform Polym 26(6):632–636Google Scholar
  23. 23.
    Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM (2018) A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Devices 3:1–17.Google Scholar
  24. 24.
    Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357(21):3654–3660CrossRefGoogle Scholar
  25. 25.
    Kumaran VS, Ng HM, Ramesh S, Ramesh K, Vengadaesvaran B, Numan A (2018) The conductivity and dielectric studies of solid polymer electrolytes based on poly ( acrylamide-co-acrylic acid ) doped with sodium iodide. Ionics 24(7):1947–1953CrossRefGoogle Scholar
  26. 26.
    Fattah NFA, Ng HM, Mahipal YK, et al (2016) An approach to solid-state electrical double layer capacitors fabricated with graphene oxide-doped, ionic liquid-based solid copolymer electrolytes. Materials 9(6):450Google Scholar
  27. 27.
    Sim LN, Yahya R, Arof AK (2016) Blend polymer electrolyte films based on poly(ethyl methacrylate)/poly(vinylidenefluoride-co-hexafluoropropylene) incorporated with 1-butyl-3-methyl imidazolium iodide ionic liquid. Solid State Ionics 291:26–32CrossRefGoogle Scholar
  28. 28.
    Polu AR, Rhee HW (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrog Energy 42(10):7212–7219CrossRefGoogle Scholar
  29. 29.
    Tafur JP, Santos F, Fernández Romero AJ (2015) Influence of the ionic liquid type on the gel polymer electrolytes properties. Membranes 5(4):752–771CrossRefGoogle Scholar
  30. 30.
    Amran NNA, Manan NSA, Kadir MFZ (2016) The effect of LiCF3SO3 on the complexation with potato starch-chitosan blend polymer electrolytes. Ionics 22(9):1647–1658CrossRefGoogle Scholar
  31. 31.
    Ahmad W, Mahmood K, Mizanur M, Khan R, Yee TC (2014) Effects of reaction temperature on the synthesis and thermal properties of carrageenan ester. J Phys Sci 25(1):123–138Google Scholar
  32. 32.
    Shalu VKS, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3(28):7305–7318CrossRefGoogle Scholar
  33. 33.
    Martinelli A et al (2007) Physical properties of proton conducting membranes based on a protic ionic liquid. J Phys Chem B 111(43):12462–12467CrossRefGoogle Scholar
  34. 34.
    Chong MY, Numan A, Liew CW, Ng HM, Ramesh K, Ramesh S (2018) Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles. J Phys Chem Solids 117(January):194–203CrossRefGoogle Scholar
  35. 35.
    Hashim MA, Yatim NM, Mahmud NAC, et al (2018) Hybrid solid polymer electrolyte from diapers as separator for electrochemical double layer capacitor (EDLC). In: AIP Conf Proc 1972(1):020001Google Scholar
  36. 36.
    Chong MY, Numan A, Liew CW, Ramesh K, Ramesh S (2017) Comparison of the performance of copper oxide and yttrium oxide nanoparticle based hydroxylethyl cellulose electrolytes for supercapacitors. J Appl Polym Sci 134(13):1–11CrossRefGoogle Scholar
  37. 37.
    Maletin Y, Strelko V, Stryzhakova N, et al (2013) Carbon Based Electrochemical Double Layer Capacitors of Low Internal Resistance. Energy Environ Res 3:156–165Google Scholar
  38. 38.
    Stepniak I, Ciszewski A (2009) Electric double layer capacitors with polymer hydrogel electrolyte based on poly(acrylamide) and modified electrode and separator materials. Electrochim Acta 54(28):7396–7400CrossRefGoogle Scholar
  39. 39.
    Lim CS, Teoh KH, Liew CW, Ramesh S (2014) Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)-lithium perchlorate based polymer electrolyte incorporated with TiO2. Mater Chem Phys 143(2):661–667CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. K. Farhana
    • 1
  • Fatin Saiha Omar
    • 1
  • R. Shanti
    • 1
  • Y. K. Mahipal
    • 2
  • S. Ramesh
    • 1
    Email author
  • K. Ramesh
    • 1
  1. 1.Department of Physics, Faculty of ScienceUniversity of Malaya, Centre for Ionics University of MalayaKuala LumpurMalaysia
  2. 2.School of Studies in Physics & Astrophysics, Pt. RavishankarShukla UniversityRaipurIndia

Personalised recommendations