, Volume 25, Issue 7, pp 3041–3050 | Cite as

A facile strategy to upgrade electrochemical performances of LiEuTiO4 by surface modification derived from pyrolysis of urea

  • Yixin Chen
  • Decheng Zhu
  • Chongxing Ji
  • Xianyu Zhu
  • Yanhui Xu
  • Decheng LiEmail author
Original Paper


A facile strategy was proposed to improve electrochemical performances of LiEuTiO4 by surface modification via pyrolysis of urea at a rather low temperature of 400 °C in N2 atmosphere. The modified LiEuTiO4 exhibited excellent electrochemical performances, including high capacity (166.3 mA h g−1 at 100 mA g−1 at 1st cycle), high rate capability (129.4 mA h g−1 at 1600 mA g−1), and long cyclic stability (149.8 mA h g−1 after 650 cycles at 500 mA g−1). The effects of surface modification on structure and electrochemical performances were extensively studied. SEM and TEM results indicated the pyrolysis of urea surface modification which successfully lead to the formation of a nitrogen–carbon co-existed coating layer. XPS analysis confirmed the presence of N-doped carbon and TiN, which were attributed to remarkable reduction of the polarization and enhancement of the conductivity of LiEuTiO4.


Lithium-ion battery Anode material Rare earth Titanium-based material surface modification 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2019_2864_MOESM1_ESM.doc (386 kb)
ESM 1 (DOC 386 kb)


  1. 1.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176CrossRefGoogle Scholar
  2. 2.
    Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288CrossRefGoogle Scholar
  3. 3.
    Rao Z, Wang S (2011) A review of power battery thermal energy management. Renew Sustain Energ Rev 15(9):4554–4571CrossRefGoogle Scholar
  4. 4.
    Zier M, Scheiba F, Oswald S, Thomas J, Goers D, Scherer T, Klose M, Ehrenberg H, Eckert J (2014) Lithium dendrite and solid electrolyte interphase investigation using OsO4. J Power Sources 266:198–207CrossRefGoogle Scholar
  5. 5.
    Guo Z, Zhu J, Feng J, Du S (2015) Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes. RSC Adv 5(85):69514–69521CrossRefGoogle Scholar
  6. 6.
    Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang JG (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456CrossRefGoogle Scholar
  7. 7.
    Zhao B, Ran R, Liu M, Shao Z (2015) A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater Sci Eng: R: Rep 98:1–71CrossRefGoogle Scholar
  8. 8.
    Zhang B, Liu Y, Huang Z, Oh S, Yu Y, Mai Y-W, Kim J-K (2012) Urchin-like Li4Ti5O12–carbon nanofiber composites for high rate performance anodes in Li-ion batteries. J Mater Chem 22(24)Google Scholar
  9. 9.
    Erickson EM, Ghanty C, Aurbach D (2014) New horizons for conventional lithium ion battery technology. J Phys Chem Lett 5(19):3313–3324CrossRefGoogle Scholar
  10. 10.
    Yersak TA, Yan Y, Stoldt C, Lee SH (2012) Ambient temperature and pressure mechanochemical preparation of nano-LiTiS2. ECS Electrochem Lett 1(1):A21–A23CrossRefGoogle Scholar
  11. 11.
    Clark SJ, Wang D, Armstrong AR, Bruce PG (2016) Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode. Nat Commun 7:10898CrossRefGoogle Scholar
  12. 12.
    Wu K, Wang D, Lin X, Shao L, Shui M, Jiang X, Long N, Ren Y, Shu J (2014) Comparative study of Na2Li2Ti6O14 prepared by different methods as advanced anode material for lithium-ion batteries. J Electroanal Chem 717-718:10–16CrossRefGoogle Scholar
  13. 13.
    Fan S-S, Yu H-T, Xie Y, Yi T-F, Tian G-H (2018) Morphology control and its effect on the electrochemical performance of Na2Li2Ti6O14 anode materials for lithium ion battery application. Electrochim Acta 259:855–864CrossRefGoogle Scholar
  14. 14.
    Toda K, Kurita S, Sato M (1996) New layered perovskite compounds, LiLaTiO4 and LiEuTiO4. J Ceram Soc Jpn 104(1206):140–142CrossRefGoogle Scholar
  15. 15.
    Song S-H, Alonso JA, Cheng J-G, Goodenough JB (2014) Magnetic phase transformation induced by electrochemical lithium intercalation in Li1+xEuTiO4 and Li2+2xEu2Ti3O10 (0 ≤ x ≤ 1) compounds. J Solid State Electrochem 18(7):2047–2060CrossRefGoogle Scholar
  16. 16.
    Song S-H, Ahn K, Kanatzidis MG, Alonso JA, Cheng J-G, Goodenough JB (2013) Effect of an internal electric field on the redox energies of ALnTiO4 (a = Na or Li, ln = Y or rare-earth). Chem Mater 25(19):3852–3857CrossRefGoogle Scholar
  17. 17.
    Huang J, Yang K, Zhang Z, Yang L, Hirano SI (2017) Layered perovskite LiEuTiO4 as a 0.8 V lithium intercalation electrode. Chem Commun (Camb) 53(55):7800–7803CrossRefGoogle Scholar
  18. 18.
    Wang KX, Li XH, Chen JS (2015) Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 27(3):527–545CrossRefGoogle Scholar
  19. 19.
    Cao X, Zheng B, Rui X, Shi W, Yan Q, Zhang H (2014) Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew Chem Int Ed Engl 53(5):1404–1409CrossRefGoogle Scholar
  20. 20.
    Guo Y-G, Hu J-S, Wan L-J (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887CrossRefGoogle Scholar
  21. 21.
    Guo M, Wang S, Ding L-X, Zheng L, Wang H (2015) Synthesis of novel nitrogen-doped lithium titanate with ultra-high rate capability using melamine as a solid nitrogen source. J Mater Chem A 3(20):10753–10759CrossRefGoogle Scholar
  22. 22.
    Ming H, Ming J, Li X, Zhou Q, Wang H, Jin L, Fu Y, Adkins J, Zheng J (2014) Hierarchical Li4Ti5O12 particles co-modified with C&N towards enhanced performance in lithium-ion battery applications. Electrochim Acta 116:224–229CrossRefGoogle Scholar
  23. 23.
    Fu Z, Chen L, Wan L, Wang F, Du J, Yang X, Ding Y (2017) Facile synthesis of N-doped carbon-coated Li4Ti5O12 anode for application in high-rate lithium ion batteries. Ionics 24(6):1579–1586CrossRefGoogle Scholar
  24. 24.
    Pan H, Zhao L, Hu YS, Li H, Chen L (2012) Improved Li-storage performance of Li4Ti5O12 coated with C-N compounds derived from pyrolysis of urea through a low-temperature approach. ChemSusChem 5(3):526–529CrossRefGoogle Scholar
  25. 25.
    Wan Z, Cai R, Jiang S, Shao Z (2012) Nitrogen- and TiN-modified Li4Ti5O12: one-step synthesis and electrochemical performance optimization. J Mater Chem 22(34):17773CrossRefGoogle Scholar
  26. 26.
    Jeong JH, Kim M-S, Kim Y-H, Roh KC, Kim K-B (2016) High-rate Li4Ti5O12/N-doped reduced graphene oxide composite using cyanamide both as nanospacer and a nitrogen doping source. J Power Sources 336:376–384CrossRefGoogle Scholar
  27. 27.
    Long d H, Jeong MG, Lee YS, Choi W, Lee JK, Oh IH, Jung HG (2015) Coating lithium titanate with nitrogen-doped carbon by simple refluxing for high-power lithium-ion batteries. ACS Appl Mater Interfaces 7(19):10250–10257CrossRefGoogle Scholar
  28. 28.
    Zhao L, Hu YS, Li H, Wang ZX, Chen LQ (2011) Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater 23(11):1385–1388CrossRefGoogle Scholar
  29. 29.
    Xiong L-B, Li J-L, Yang B, Yu Y (2012) Ti3+in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater 2012:1–13CrossRefGoogle Scholar
  30. 30.
    Wang HB, Zhang CJ, Liu ZH, Wang L, Han PX, Xu HX, Zhang KJ, Dong SM, Yao JH, Cui GL (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21(14):5430–5434CrossRefGoogle Scholar
  31. 31.
    Wang DH, Jia L, Wu XL, Lu LQ, Xu AW (2012) One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4(2):576–584CrossRefGoogle Scholar
  32. 32.
    Wang X, Wang F, Bo C, Cheng K, Wang J, Zhang J, Song H (2018) Promotion of phenol photodecomposition and the corresponding decomposition mechanism over g-C3N4/TiO2 nanocomposites. Appl Surf Sci 453:320–329CrossRefGoogle Scholar
  33. 33.
    Nawaz S, Malik H, Warsi MF, Shahid M, Shakir I, Wadood A, Khan MA (2015) New La1-xCr0.7xEu0.3xFeO3 nanoparticles: synthesis via wet chemical route, structural characterization for magnetic and dielectric behavior evaluation. Ceram Int 41(5):6812–6816CrossRefGoogle Scholar
  34. 34.
    Huang DG, Liao SJ, Zhou WB, Quan SQ, Liu L, He ZJ, Wan JB (2009) Synthesis of samarium- and nitrogen-co-doped TiO2 by modified hydrothermal method and its photocatalytic performance for the degradation of 4-chlorophenol. J Phys Chem Solids 70(5):853–859CrossRefGoogle Scholar
  35. 35.
    Zhou XS, Peng F, Wang HJ, Yu H, Yang J (2011) Preparation of nitrogen doped TiO2 photocatalyst by oxidation of titanium nitride with H2O2. Mater Res Bull 46(6):840–844CrossRefGoogle Scholar
  36. 36.
    Wang ZH, Xiong XQ, Qie L, Huang YH (2013) High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole. Electrochim Acta 106:320–326CrossRefGoogle Scholar
  37. 37.
    Fu Y, Ming H, Zhou Q, Jin L, Li X, Zheng J (2014) Nitrogen-doped carbon coating inside porous TiO2 using small nitrogen-containing molecules for improving performance of lithium-ion batteries. Electrochim Acta 134:478–485CrossRefGoogle Scholar
  38. 38.
    Zhu S, Xu K, Sui S, Li J, Ma L, He C, Liu E, He F, Shi C, Miao L, Jiang J, Zhao N (2017) Synthesis of 2D/3D carbon hybrids by heterogeneous space-confined effect for electrochemical energy storage. J Mater Chem A 5(36):19175–19183CrossRefGoogle Scholar
  39. 39.
    Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22(18):8911CrossRefGoogle Scholar
  40. 40.
    Yue Y, Han P, He X, Zhang K, Liu Z, Zhang C, Dong S, Gu L, Cui G (2012) In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage. J Mater Chem 22(11):4938CrossRefGoogle Scholar
  41. 41.
    Tian W, Xi B, Mao H, Zhang J, Feng J, Xiong S (2018) Systematic exploration of the role of a modified layer on the separator in the electrochemistry of lithium-sulfur batteries. ACS Appl Mater Interfaces 10(36):30306–30313CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yixin Chen
    • 1
  • Decheng Zhu
    • 1
  • Chongxing Ji
    • 1
  • Xianyu Zhu
    • 1
  • Yanhui Xu
    • 1
  • Decheng Li
    • 1
    Email author
  1. 1.College of EnergySoochow UniversitySuzhouChina

Personalised recommendations