pp 1–8 | Cite as

In-situ grown ultrathin MoS2 nanosheets on MoO2 hollow nanospheres to synthesize hierarchical nanostructures and its application in lithium-ion batteries

  • Jingru Xie
  • Kunjie Zhu
  • Jie Min
  • Linyu Yang
  • Jianzhe Luo
  • Jun LiuEmail author
  • Ming Lei
  • Ruizhi Zhang
  • Lu Ren
  • Ziye Wang
Original Paper


A unique hierarchical hollow-nanostructure consists of ultrathin MoS2 nanosheets and hollow MoO2 nanospheres has been designed as anode material for lithium batteries. And a simple process for producing ultrathin MoS2 nanosheets in-situ grown on hollow MoO2 nanospheres is reported. Such a hierarchical nanostructure has four advantages: Firstly, the high electric conductivity of the MoO2 core can effectively increase the performance of the composite. Secondly, the shell of MoS2 nanosheets with highly exposed active sites can improve the electrochemical reaction activity of this heterostructure. Thirdly, the reciprocal hybridization between the MoO2 core and MoS2 shell can availably prevent the aggregation of MoS2 nanosheets. Owing to the unique hierarchical MoO2@MoS2 hollow-nanostructure, it exhibits great electrochemical performance and can deliver reversible capacity as high as 820.7 mA h g−1 at a current density of 0.5 A g−1 after 100 cycles, while it is used as a new anode material for lithium-ion batteries.


Transitional metal oxides and chalcogenides Ultrathin MoS2 nanosheets Hierarchical hollow nanostructures Lithium-ion batteries 


Funding information

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51772331, 51472271), the National Basic Research Program of China (973 Program) grant No. 2013CB932901, and the Project of Innovation-driven Plan in Central South University (2016CX002).

Supplementary material

11581_2019_2863_MOESM1_ESM.docx (280 kb)
ESM 1 (DOCX 280 kb)


  1. 1.
    Zhao C, Kong J, Yao X, Tang X, Dong Y, Phua SL, Lu X (2014) Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces 6:6392–6398CrossRefGoogle Scholar
  2. 2.
    Li HZ, Yang LY, Liu J, Li ST, Fang LB, Lu YK, Yang HR, Liu SL, Lei M (2016) Improved electrochemical performance of yolk-shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries. J Power Sources 324:780–787CrossRefGoogle Scholar
  3. 3.
    Pan X, Li S, Wang Z, Yang L-Y, Zhu K, Ren L, Lei M, Liu J (2017) Core–shell MoO2/C nanospheres embedded in bubble sheet-like carbon film as lithium ion battery anodes. Mater Lett 199:139–142CrossRefGoogle Scholar
  4. 4.
    Lu Y, Wu J, Liu J, Lei M, Tang S, Lu P, Yang L, Yang H, Yang Q (2015) Facile synthesis of Na0.33V2O5 nanosheet-graphene hybrids as ultrahigh performance cathode materials for lithium ion batteries. ACS Appl Mater Interfaces 7:17433–17440CrossRefGoogle Scholar
  5. 5.
    Zhou J, Qin J, Zhang X, Shi C, Liu E, Li J, Zhao N, He C (2015) 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 9:3837–3848CrossRefGoogle Scholar
  6. 6.
    Tan C, Zhang H (2015) Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev 44:2713–2731CrossRefGoogle Scholar
  7. 7.
    Zhong W, Tu W, Feng S, Xu A (2019) Photocatalytic H2 evolution on CdS nanoparticles by loading FeSe nanorods as co-catalyst under visible light irradiation. J Alloy Compounds 772:669–674CrossRefGoogle Scholar
  8. 8.
    Huang X, Zeng Z, Zhang H (2013) Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev 42:1934–1946CrossRefGoogle Scholar
  9. 9.
    Huang X, Cai X, Xu D, Chen W, Wang S, Zhou W, Meng Y, Fang Y, Yu X (2018) Hierarchical Fe2- O3@CNF fabric decorated with MoS2 nanosheets as a robust anode for flexible lithium-ion batteries exhibiting ultrahigh areal capacity. J Mater Chem A 6:16890–16899CrossRefGoogle Scholar
  10. 10.
    Wang Z, Chen JS, Zhu T, Madhavi S, Lou XW (2010) One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chem Commun 46:6906–6908CrossRefGoogle Scholar
  11. 11.
    Petnikota S, Teo KW, Chen L, Sim A, Marka SK, Reddy MV, Srikanth VV, Adams S, Chowdari BV (2016) Exfoliated graphene oxide/MoO2 composites as anode materials in lithium-ion batteries: an insight into intercalation of Li and conversion mechanism of MoO2. ACS Appl Mater Interfaces 8:10884–10896CrossRefGoogle Scholar
  12. 12.
    Zhang P, Zou L, Hu H, Wang M, Fang J, Lai Y, Li J (2017) 3D hierarchical carbon microflowers decorated with MoO2 nanoparticles for lithium ion batteries. Electrochim Acta 250:219–227CrossRefGoogle Scholar
  13. 13.
    Wang S, Zhang Z, Yang Y, Tang Z (2017) Efficient lithium-ion storage by hierarchical core-shell TiO2 nanowires decorated with MoO2 quantum dots encapsulated in carbon nanosheets. ACS Appl Mater Interfaces 9:23741–23747CrossRefGoogle Scholar
  14. 14.
    Yu XY, Yu L, Lou XW (2016) Metal sulfide hollow nanostructures for electrochemical energy storage. Adv Energy Mater 6:1501333CrossRefGoogle Scholar
  15. 15.
    Nguyen QH, Hur J (2019) MoS2–TiC–C nanocomposites as new anode materials for high-performance lithium-ion batteries. J Nanosci Nanotechnol 19:996–1000CrossRefGoogle Scholar
  16. 16.
    Li X, Zai J, Xiang S, Liu Y, He X, Xu Z, Wang K, Ma Z, Qian X (2016) Regeneration of metal sulfides in the delithiation process: the key to cyclic stability. Adv Energy Mater 6:1601056CrossRefGoogle Scholar
  17. 17.
    Jiang H, Ren D, Wang H, Hu Y, Guo S, Yuan H, Hu P, Zhang L, Li C (2015) 2D monolayer MoS2-carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv Mater 27:3687–3695CrossRefGoogle Scholar
  18. 18.
    Wang PP, Sun H, Ji Y, Li W, Wang X (2014) Three-dimensional assembly of single-layered MoS2. Adv Mater 26:964–969CrossRefGoogle Scholar
  19. 19.
    Wang M, Li G, Xu H, Qian Y, Yang J (2013) Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl Mater Interfaces 5:1003–1008CrossRefGoogle Scholar
  20. 20.
    Wang Y, Yu L, Lou XW (2016) Synthesis of highly uniform molybdenum–glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew Chem Int Ed 55:7423–7426CrossRefGoogle Scholar
  21. 21.
    Zhang L, Wu HB, Yan Y, Wang X, Lou XW (2014) Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ Sci 7:3302–3306CrossRefGoogle Scholar
  22. 22.
    Yan Y, Ge X, Liu Z, Wang JY, Lee JM, Wang X (2013) Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 5:7768–7771CrossRefGoogle Scholar
  23. 23.
    Zhu C, Mu X, van Aken PA, Yu Y, Maier J (2014) Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Ed 53:2152–2156CrossRefGoogle Scholar
  24. 24.
    Chen YM, Yu XY, Li Z, Paik U, Lou XW (2016) Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Sci Adv 2:e1600021CrossRefGoogle Scholar
  25. 25.
    Deng Z, Hu Y, Ren D, Lin S, Jiang H, Li C (2015) Reciprocal hybridization of MoO2 nanoparticles and few-layer MoS2 for stable lithium-ion batteries. Chem Commun 51:13838–13841CrossRefGoogle Scholar
  26. 26.
    Xu Z, Wang T, Kong L, Yao K, Fu H, Li K, Cao L, Huang J, Zhang Q (2017) MoO2@MoS2 Nanoarchitectures for high-loading advanced lithium-ion battery anodes. Part Part Syst Charact 34:1600223CrossRefGoogle Scholar
  27. 27.
    Xiao D, Zhang J, Li X, Zhao D, Huang H, Huang J, Cao D, Li Z, Niu C (2016) Nano-carved MoS2-MoO2 hybrids fabricated using in situ grown MoS2 as nano-masks. ACS Nano 10:9509–9515CrossRefGoogle Scholar
  28. 28.
    Chen B, Liu E, Cao T, He F, Shi C, He C, Ma L, Li Q, Li J, Zhao N (2017) Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: towards high-performance lithium-ion batteries anode materials. Nano Energy 33:247–256CrossRefGoogle Scholar
  29. 29.
    Zhang L, Lou XW (2014) Hierarchical MoS2 shells supported on carbon spheres for highly reversible lithium storage. Chem Eur J 20:5219–5223CrossRefGoogle Scholar
  30. 30.
    Zhang G, Xia BY, Xiao C, Yu L, Wang X, Xie Y, Lou XW (2013) General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew Chem Int Ed 125:8916–8916CrossRefGoogle Scholar
  31. 31.
    Yu L, Zhang L, Wu HB, Lou XW (2014) Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew Chem Int Ed 53:3711–3714CrossRefGoogle Scholar
  32. 32.
    Wang S, Guan BY, Yu L, Lou XW (2017) Rational design of three-layered TiO2@ carbon@ MoS2 hierarchical nanotubes for enhanced lithium storage. Adv Mater 29:1702724CrossRefGoogle Scholar
  33. 33.
    Lu J, Xia G, Gong S, Wang C, Jiang P, Lin Z, Wang D, Yang Y, Chen Q (2018) Metallic 1T phase MoS2 nanosheets decorated hollow cobalt sulfide polyhedrons for high-performance lithium storage. J Mater Chem A 6:12613–12622CrossRefGoogle Scholar
  34. 34.
    Li P, Jeong JY, Jin B, Zhang K, Park JH (2018) Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries. Adv Energy Mater 8:1703300CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Wang C, Hou H, Zou G, Ji X (2017) Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv Energy Mater 7:1600173CrossRefGoogle Scholar
  36. 36.
    Weng W, Lin J, Du Y, Ge X, Zhou X, Bao J (2018) Template-free synthesis of metal oxide hollow micro-/nanospheres via Ostwald ripening for lithium-ion batteries. J Mater Chem A 6:10168–10175CrossRefGoogle Scholar
  37. 37.
    Min J, Wang K, Liu J, Yao Y, Wang W, Yang L, Zhang R, Lei M (2017) Facile synthesis of uniform MoO2/Mo2CTx heteromicrospheres as high-performance anode materials for lithium-ion batteries. J Power Sources 363:392–403CrossRefGoogle Scholar
  38. 38.
    Wang Y, Ma Z, Chen Y, Zou M, Yousaf M, Yang Y, Yang L, Cao A, Han RPS (2016) Controlled synthesis of core-shell carbon@MoS2 nanotube sponges as high-performance battery electrodes. Adv Mater 28:10175–10181CrossRefGoogle Scholar
  39. 39.
    Teng Y, Zhao H, Zhang Z, Li Z, Xia Q, Zhang Y, Zhao L, Du X, Du Z, Lv P, Świerczek K (2016) MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10:8526–8535CrossRefGoogle Scholar
  40. 40.
    Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2 graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728CrossRefGoogle Scholar
  41. 41.
    Jing Y, Ortiz-Quiles EO, Cabrera CR, Chen Z, Zhou Z (2014) Layer-by-layer hybrids of MoS2 and reduced graphene oxide for lithium ion batteries. Electrochim Acta 147:392–400CrossRefGoogle Scholar
  42. 42.
    Sing KS, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22:773–782CrossRefGoogle Scholar
  43. 43.
    Xie T, Min J, Liu J, Chen J, Fu D, Zhang R, Zhu K, Lei M (2018) Synthesis of mesoporous Co3O4 nanosheet-assembled hollow spheres towards efficient electrocatalytic oxygen evolution. J Alloys Compounds 754:72–77CrossRefGoogle Scholar
  44. 44.
    Chang K, Geng D, Li X, Yang J, Tang Y, Cai M, Li R, Sun X (2013) Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv Energy Mater 3:839–844CrossRefGoogle Scholar
  45. 45.
    Zhong W, Shen S, Feng S, Lin Z, Wang Z, Fang B (2018) Facile fabrication of alveolate Cu2−xSe microsheets as a new visible-light photocatalyst for discoloration of Rhodamine B. CrystEngComm 20:7851–7856CrossRefGoogle Scholar
  46. 46.
    Chen B, Liu E, He F, Shi C, He C, Li J, Zhao N (2016) 2D sandwich-like carbon-coated ultrathin TiO2-@defect-rich MoS2 hybrid nanosheets: synergistic-effect-promoted electrochemical performance for lithium ion batteries. Nano Energy 26:541–549CrossRefGoogle Scholar
  47. 47.
    Jeong JM, Lee KG, Chang SJ, Kim JW, Han YK, Lee SJ, Choi BG (2015) Ultrathin sandwich-like MoS2@N-doped carbon nanosheets for anodes of lithium ion batteries. Nanoscale 7:324–329CrossRefGoogle Scholar
  48. 48.
    Hu L, Ren Y, Yang H, Xu Q (2014) Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl Mater Interfaces 6:14644–14652CrossRefGoogle Scholar
  49. 49.
    Kong D, He H, Song Q, Wang B, Lv W, Yang Q-H, Zhi L (2014) Rational design of MoS2@graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy Environ Sci 7:3320–3325CrossRefGoogle Scholar
  50. 50.
    Fang X, Hua C, Guo X, Hu Y, Wang Z, Gao X, Wu F, Wang J, Chen L (2012) Lithium storage in commercial MoS2 in different potential ranges. Electrochim Acta 81:155–160CrossRefGoogle Scholar
  51. 51.
    Liu J, Tang S, Lu Y, Cai G, Liang S, Wang W, Chen X (2013) Synthesis of Mo2N nanolayer coated MoO2 hollow nanostructures as high-performance anode materials for lithium-ion batteries. Energy Environ Sci 6:2691–2697CrossRefGoogle Scholar
  52. 52.
    Yang Q, Liang Q, Liu J, Liang S, Tang S, Lu P, Lu Y (2014) Ultrafine MoO2 nanoparticles grown on graphene sheets as anode materials for lithium-ion batteries. Mater Lett 127:32–35CrossRefGoogle Scholar
  53. 53.
    Ma L, Huang G, Chen W, Wang Z, Ye J, Li H, Chen D, Lee JY (2014) Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: microstructure and electrochemical lithium storage. J Power Sources 264:262–271CrossRefGoogle Scholar
  54. 54.
    Choi SH, Kang YC (2015) Synergetic effect of yolk-shell structure and uniform mixing of SnS-MoS2 nanocrystals for improved Na-ion storage capabilities. ACS Appl Mater Interfaces 7:24694–24702CrossRefGoogle Scholar
  55. 55.
    Guo B, Fang X, Li B, Shi Y, Ouyang C, Hu YS, Wang Z, Stucky GD, Chen L (2012) Synthesis and lithium storage mechanism of ultrafine MoO2 nanorods. Chem Mater 24:457–463CrossRefGoogle Scholar
  56. 56.
    Reddy MV, Rao GVS, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jingru Xie
    • 1
  • Kunjie Zhu
    • 1
  • Jie Min
    • 2
  • Linyu Yang
    • 3
  • Jianzhe Luo
    • 1
  • Jun Liu
    • 1
    Email author
  • Ming Lei
    • 4
  • Ruizhi Zhang
    • 1
  • Lu Ren
    • 1
  • Ziye Wang
    • 5
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Research Institute of Tsinghua University in ShenzhenShenzhenChina
  3. 3.School of Physics and TechnologyXin Jiang University, UrumqiXinjiangChina
  4. 4.State Key Laboratory of Information Photonics and Optical Communications & School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  5. 5.School of Mechanical Electronic & Information EngineeringChina University of Mining and TechnologyBeijingChina

Personalised recommendations