Advertisement

Ionics

, Volume 25, Issue 7, pp 2965–2976 | Cite as

Improved electrochemical performance of Li2FeSiO4/C as cathode for lithium-ion battery via metal doping

  • Ling LiEmail author
  • Enshan HanEmail author
  • Hui Liu
  • Chen Mi
  • YaKe Shi
  • Xu Yang
Original Paper

Abstract

Li2FeSi0.98M0.02O4/C (M = Ti, Ag, Cu, V, Pb) was synthesized as cathode material for lithium-ion battery by the solid-state method. The electrochemical performance of Li2FeSi0.98M0.02O4/C was investigated by constant current charge–discharge test, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results show that the materials doped with Ti or Ag at the Si site deliver good initial discharge capacity. Li2FeSi1-xMxO4/C (M = Ti, Ag; x = 0.01, 0.02, 0.03, 0.05) was synthesized via the solid-state method. By comparing the electrochemical properties, it can be observed that Li2FeSi0.98Ti0.02O4/C and Li2FeSi0.98Ag0.02O4/C have good initial discharge capacity. The initial discharge capacity of Li2FeSi0.98Ti0.02O4/C is 164.1 mAh/g, which is equivalent to 0.98 Li+ deintercalation. The capacity of Li2Fe0.98Ti0.02SiO4/C is 155.8 mAh/g after 10 cycles under 0.1 C, and the capacity retention rate is 94.9%. The initial discharge capacity of Li2FeSi0.98Ag0.02O4/C is 166.6 mAh/g, which is better than other materials. The capacity of Li2Fe0.98Ag0.02SiO4/C is 132.8 mAh/g after 10 cycles under 0.1 C, and the capacity retention rate is 79.7%. The charge–discharge cycle performance of Li2FeSi0.98Ti0.02O4/C is more stable than Li2FeSi0.98Ag0.02O4/C. The Li+ diffusion coefficient of Li2FeSi0.98Ti0.02O4/C is higher than that of pure phase material by two orders of magnitude. The Li2FeSi0.98Ti0.02O4/C and Li2FeSi0.98Ag0.02O4/C were tested by XRD and SEM. The XRD patterns show that there are no characteristic peaks of Fe or Li2SiO3 impurities in the materials, which indicates that the crystal structure of Li2FeSiO4 has not been changed after doping metal ion at the Si site. The SEM images indicate that the particle size of materials is quite uniform and no obvious agglomeration is detected in the materials. Li2FeSi0.98Ti0.02O4/C was analyzed by EDS, ICP, XPS, and FT-IR spectra since it delivers better performance when compared with other materials. EDS and ICP show that the values which were measured according to the ratio of each element are found to be similar to the theoretical values. The XPS spectrum confirms the existence of the characteristic peaks of Li, Fe, Si, and O in samples, which could also prove that Si4+ is successfully replaced by Ti4+ in the crystal structure of Li2FeSiO4. The position of each absorption peak in the infrared spectrogram coincides with that reported in the literatures, which indicates that the stable materials are formed.

Keywords

Li2FeSiO4 Ti, Ag doping Solid-state method Li-ion battery Electrochemical performance 

Notes

References

  1. 1.
    Liivat A (2012) Structural changes on cycling Li2FeSiO4 polymorphs from DFT calculations. Solid State Ionics 228:19–24CrossRefGoogle Scholar
  2. 2.
    Zaghib K, Salah AA, Ravet N et al (2006) Structural, magnetic and electrochemical properties of lithium iron orthosilicate. J Power Sources 160(2):1381–1386CrossRefGoogle Scholar
  3. 3.
    Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7(2):156–160CrossRefGoogle Scholar
  4. 4.
    Yan Z, Cai S, Miao L, Zhou X, Zhao Y (2012) Synthesis and characterization of in situ carbon-coated Li2FeSiO4 cathode materials for lithium ion battery. J Alloys Compd 511(1):101–106CrossRefGoogle Scholar
  5. 5.
    Qu L, Fang S, Yang L, Hirano SI (2012) Li2FeSiO4/C cathode material synthesized by template-assisted sol-gel process with Fe2O3 microsphere. J Power Sources 217:243–247CrossRefGoogle Scholar
  6. 6.
    Oghbaei M, Baniasadi F, Asgari S (2016) Lithium iron silicate sol-gel synthesis and electrochemical investigation. J Alloys Compd 672:93–97CrossRefGoogle Scholar
  7. 7.
    Xu Y, Shen W, Zhang A, Liu H, Ma Z (2014) Template-free hydrothermal synthesis of Li2FeSiO4 hollow spheres as cathode materials for lithium-ion batteries. J Mater Chem A 2(32):12982–12990CrossRefGoogle Scholar
  8. 8.
    Zhang M, Chen Q, Xi Z, Hou Y, Chen Q (2012) One-step hydrothermal synthesis of Li2FeSiO4/C composites as lithium-ion battery cathode materials. J Mater Sci 47(5):2328–2332CrossRefGoogle Scholar
  9. 9.
    Ren B, Xu Y, Yang R et al (2009) Preparation of Li2FeSiO4 as cathode materials for Lithium-ion battery by solid-state reaction. Mater Heat Treatment 38:41–43Google Scholar
  10. 10.
    Zhang S, Deng C, Yang S (2009) Preparation of nano-Li2FeSiO4 as cathode material for lithium-ion batteries. Electrochem Solid-State Lett 12(7):A136–A139CrossRefGoogle Scholar
  11. 11.
    Gong ZL, Li YX, He GN, Li J, Yang Y (2008) Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process. Electrochem Solid-State Lett 11(5):A60–A63CrossRefGoogle Scholar
  12. 12.
    Zheng Z, Wang Y, Zhang A, Zhang T, Cheng F, Tao Z, Chen J (2012) Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. J Power Sources 198:229–235CrossRefGoogle Scholar
  13. 13.
    Gao K (2014) Effect of Mn doping on electrochemical properties of Li2FeSiO4/C cathode materials based on a vacuum solid-state method. Ionics 20(6):809–815CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Liu X, Wu Y, Zhao H, Chen B, Xiong W (2015) Synthesis and characterization of spherical Li2Fe0.5V0.5SiO4/C composite for high-performance cathode material of Lithium-ion secondary batteries. J Electrochem Soc 162(4):A737–A742CrossRefGoogle Scholar
  15. 15.
    Deng C, Zhang S, Yang SY, Fu BL, Ma L (2011) Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M= Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries. J Power Sources 196(1):386–392CrossRefGoogle Scholar
  16. 16.
    Zhang S, Deng C, Fu BL et al (2010) Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries. J Electroanal Chem 644(2):150–154CrossRefGoogle Scholar
  17. 17.
    Zhang S, Deng C, Fu BL et al (2010) Effects of Cr doping on the electrochemical properties of Li2FeSiO4 cathode material for lithium-ion batteries. Electrochim Acta 55(28):8482–8489CrossRefGoogle Scholar
  18. 18.
    Chen M, Shi J, Zhang Y et al (2011) Desorption of microscale silicone from concentrated hydrochloric acid by the adsorption method. J Jilin Inst Chem Technol 28(5):10–14Google Scholar
  19. 19.
    Armand M, Tarascon JM, Arroyo-de Dompablo ME (2011) Comparative computational investigation of N and F substituted polyoxoanionic compounds: the case of Li2FeSiO4 electrode material. Electrochem Commun 13(10):1047–1050CrossRefGoogle Scholar
  20. 20.
    Chen J (2013) Recent progress in advanced materials for lithium ion batteries. Materials 6(1):156–183CrossRefGoogle Scholar
  21. 21.
    Li L, Han E, Yang P, Zhu L, Liu Y (2018) Study on electrochemical performance of Mg-doped Li2FeSiO4 cathode material for Li-ion batteries. Ionics 24(7):1869–1878CrossRefGoogle Scholar
  22. 22.
    Shao B, Taniguchi I (2012) Synthesis of Li2FeSiO4/C nanocomposite cathodes for lithium batteries by a novel synthesis route and their electrochemical properties. J Power Sources 199:278–286CrossRefGoogle Scholar
  23. 23.
    Liu S, Xu J, Li D, Hu Y, Liu X, Xie K (2013) High capacity Li2MnSiO4/C nanocomposite prepared by sol-gel method for lithium-ion batteries. J Power Sources 232:258–263CrossRefGoogle Scholar
  24. 24.
    Boulineau A, Sirisopanaporn C, Dominko R, Armstrong AR, Bruce PG, Masquelier C (2010) Polymorphism and structural defects in Li2FeSiO4. Dalton Trans 39(27):6310–6316CrossRefGoogle Scholar
  25. 25.
    Nishimura S, Hayase S, Kanno R et al (2008) Structure of Li2FeSiO4. J Am Chem Soc 130(40):13212–13213CrossRefGoogle Scholar
  26. 26.
    Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Wook Chang D, Dai L, Baek JB (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci 109(15):5588–5593CrossRefGoogle Scholar
  27. 27.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  28. 28.
    Aravindan V, Karthikeyan K, Kang KS, Yoon WS, Kim WS, Lee YS (2011) Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes. J Mater Chem 21(8):2470–2475CrossRefGoogle Scholar
  29. 29.
    Kempaiah DM, Rangappa D, Honma I (2012) Controlled synthesis of nanocrystalline Li2MnSiO4 particles for high capacity cathode application in lithium-ion batteries. Chem Commun 48(21):2698–2700CrossRefGoogle Scholar
  30. 30.
    Bhaskar A, Deepa M, Rao TN, Varadaraju UV (2012) In situ carbon coated Li2MnSiO4/C composites as cathodes for enhanced performance Li-ion batteries. J Electrochem Soc 159(12):A1954–A1960CrossRefGoogle Scholar
  31. 31.
    Zhang LL, Sun HB, Yang XL, Wen YW, Huang YH, Li M, Peng G, Tao HC, Ni SB, Liang G (2015) Study on electrochemical performance and mechanism of V-doped Li2FeSiO4 cathode material for Li-ion batteries. Electrochim Acta 152:496–504CrossRefGoogle Scholar
  32. 32.
    Gao H, Hu Z, Zhang K, Cheng F, Chen J (2013) Intergrown Li2FeSiO4·LiFePO4-C nanocomposites as high-capacity cathode materials for lithium-ion batteries. Chem Commun 49(29):3040–3042CrossRefGoogle Scholar
  33. 33.
    Mao M, Jiang L, Wu K et al (2015) The structure control of Zn/S graphene composites and their excellent properties for lithium-ion batteries. J Mater Chem A 3(25):13384–13389CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Du F, Yan X et al (2014) Improvements in the electrochemical kinetic properties and rate capability of anatase titanium dioxide nanoparticles by nitrogen doping. ACS Appl Mater Interfaces 6(6):4458–4465CrossRefGoogle Scholar
  35. 35.
    Guo HJ, Xiang K, Cao X et al (2009) Preparation and characteristics of Li2FeSiO4/C composite for cathode of lithium ion batteries. Trans Nonferrous Metals Soc China 19(1):166–169CrossRefGoogle Scholar
  36. 36.
    Chen Z, Qiu S, Cao Y, Qian J, Ai X, Xie K, Hong X, Yang H (2013) Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. J Mater Chem A 1(16):4988–4992CrossRefGoogle Scholar
  37. 37.
    Lv D, Wen W, Huang X, Bai J, Mi J, Wu S, Yang Y (2011) A novel Li2FeSiO4/C composite: synthesis, characterization and high storage capacity. J Mater Chem 21(26):9506–9512CrossRefGoogle Scholar
  38. 38.
    Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954CrossRefGoogle Scholar
  39. 39.
    Li L, Han E, Dou L, Zhu L, Mi C, Li M, Niu J (2018) Enhanced electrochemical performance of Li2FeSiO4/C as cathode for lithium-ion batteries via metal doping at Fe-site. Solid State Ionics 325:30–42CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations