, Volume 25, Issue 7, pp 3309–3319 | Cite as

Hydrothermal-induced ɑ-Fe2O3/graphene nanocomposite with ultrahigh capacitance for stabilized and enhanced supercapacitor electrodes

  • M. Jayashree
  • M. ParthibavarmanEmail author
  • S. Prabhakaran
Original Paper


Pure and Fe2O3/graphene (G) nanocomposite was prepared by novel one-step hydrothermal method. XRD results suggest that rhombohedral phase of α-Fe2O3 (hematite, space group: R3c), which are consistent with the values given in the standard card (JCPDS no. 33-0664). The N2 adsorption–desorption results confirms that Fe2O3-G composite shows highest specific area (91 m2 g−1) and lower pore size of 10 nm compared with pristine Fe2O3 (surface area 76 = m2 g−1 and pore size = 17 nm). The electrochemical measurement demonstrates that Fe2O3/G composite shows a specific capacitance as high as 315 F g−1 at a discharge current density of 2 A g−1. Even at the current density of 10 A g−1, the specific capacitance is still as high as 185 F g−1. After 2000 cycles, the capacity retention is still maintained at 98%. This result suggests that the Fe2O3/G nanocomposite is a promising electrode material for high-energy density supercapacitor application.


Graphene Hydrothermal Transmission electron microscope Electrochemical Supercapacitor 


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Jing X, Wang Q, Wang X, Xiang Q, Bo L, Di C, Shen G (2013) Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 7:5453–5462CrossRefGoogle Scholar
  2. 2.
    Fan L-Q, Liu G-J, Zhang C-Y, Ji-Huai W, Wei Y-L (2015) Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor. Int J Hydrog Energy 40:10150–10157CrossRefGoogle Scholar
  3. 3.
    Tang Y, Chen T, Yu S, Qiao Y, Shichun M, Hu J, Gao F (2015) Synthesis of graphene oxide anchored porous manganese sulfide nanocrystals via the nanoscale Kirkendall effect for supercapacitors. J Mater Chem A 3:12913–12919CrossRefGoogle Scholar
  4. 4.
    Xiang D, Yin L, Wang C, Zhang L (2016) High electrochemical performance of RuO2–Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material. Energy 106:103–111CrossRefGoogle Scholar
  5. 5.
    Peng X, Peng L, Wu C, Xie Y (2014) Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev 43:3303–3323CrossRefGoogle Scholar
  6. 6.
    Shivakumara S, Penki TR, Munichandraiah N (2014) High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors. Mater Lett 131:100–103CrossRefGoogle Scholar
  7. 7.
    Lin F, Li X, Zhao Y, Yang Z (2016) Control strategies with dynamic threshold adjustment for supercapacitor energy storage system considering the train and substation characteristics in urban rail transit. Energies 9:257CrossRefGoogle Scholar
  8. 8.
    Subramanian V, Hall SC, Smith PH, Rambabu B (2004) Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics 175:511–515CrossRefGoogle Scholar
  9. 9.
    Patil UM, Kulkarni SB, Jamadade VS, Lokhande CD (2011) Chemically synthesized hydrous RuO2 thin films for supercapacitor application. J Alloys Compd 509:1677–1682CrossRefGoogle Scholar
  10. 10.
    Liu T, Pell WG, Conway BE (1997) Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim Acta 42:3541–3552CrossRefGoogle Scholar
  11. 11.
    Qu QT, Yang SB, Feng XL (2011) 2D sandwich-like sheets of Iron oxide grown on graphene as high energy anode material for supercapacitors. Adv Mater 23:5574–5580CrossRefGoogle Scholar
  12. 12.
    Zhang H, Zhang X, Lin H, Wang K, Sun X, Xu N, Li C, Ma Y (2015) Graphene and maghemite composites based supercapacitors delivering high volumetric capacitance and extraordinary cycling stability. Electrochim Acta 156:70–76CrossRefGoogle Scholar
  13. 13.
    Singh V, Joung D, Zhai L, Das S, Khondaker S, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRefGoogle Scholar
  14. 14.
    Wang D, Li Y, Wang Q, Wang T (2012) Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J Solid State Electrochem 16:2095–2102CrossRefGoogle Scholar
  15. 15.
    Zhang H, Gao Q, Yang K, Tan Y, Tian W, Zhu L, Li Z, Yang C (2015) Solvothermally induced α-Fe2O3/graphene nanocomposites with ultrahigh capacitance and excellent rate capability for supercapacitors. J Mater Chem A 3:22005–22011CrossRefGoogle Scholar
  16. 16.
    Tian LL, Zhuang QC, Li J, Wu C, Shi YL, Sun SG (2012) The production of self-assembled Fe2O3–graphene hybrid materials by a hydrothermal process for improved Li-cycling. Electrochim Acta 65:153–158CrossRefGoogle Scholar
  17. 17.
    Zhu XJ, Zhu W, Murali YS, Stollers MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338CrossRefGoogle Scholar
  18. 18.
    Parthibavarman M, Vallalperuman K, Sathishkumar S, Durairaj M, Thavamani K (2014) A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J Mater Sci Mater Electron 25:730–735CrossRefGoogle Scholar
  19. 19.
    Lee KK, Deng S, Fan HM, Mhaisalkar S, Tan HR, Tok ES, Loh KP, Chin WS, Sow CH (2012) α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 4:2958–2961CrossRefGoogle Scholar
  20. 20.
    Zhang H, Xie AJ, Wang CP, Wang HS, Shen YH, Tian XY (2013) Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. J Mater Chem A 1:8547–8552CrossRefGoogle Scholar
  21. 21.
    Karthik M, Parthibavarman M, Kumaresan A, Prabhakaran S, Hariharan V, Poonguzhali R, Sathiskumar S (2017) One-step microwave synthesis of pure and Mn doped WO3 nanoparticles and its structural, optical and electrochemical properties. J Mater Sci Mater Electron 28:6635–6642CrossRefGoogle Scholar
  22. 22.
    Wang D-W, Li Y-Q, Wang Q-H, Wang T-M (2012) Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J Solid State Electrochem 16:2095–2102CrossRefGoogle Scholar
  23. 23.
    Kore RM, Lokhande BJ (2017) A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J Alloys Compd 725:129–138CrossRefGoogle Scholar
  24. 24.
    Chaudhari S, Bhattacharjya D, Yu JS (2013) 1-Dimensional porous a-Fe2O3 nanorods as high performance electrode material for supercapacitors. RSC Adv 3:25120–25128CrossRefGoogle Scholar
  25. 25.
    Gund GS, Dubal DP, Chodankar NR, Cho JY, Romero PG, Park C, Lokhande CD (2015) Low cost flexible supercapacitors with high energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci Rep 5:2454CrossRefGoogle Scholar
  26. 26.
    Binitha G, Soumya MS, Madhavan AA, Praveen P, Balakrishnan A, Subramanian KRV, Reddy MV, Nair SV, Nair AS, Sivakumar N (2013) Electrospun α-Fe2O3 nanostructures for supercapacitor applications. J Mater Chem A 1:11698–11704CrossRefGoogle Scholar
  27. 27.
    Kulal PM, Dubal DP, Lokhande CD, Fulari VJ (2011) Chemical synthesis of Fe2O3 thin films for supercapacitor application. J Alloys Compd 509:2567–2571CrossRefGoogle Scholar
  28. 28.
    Wang B, Park J, Wang CY, Ahn H, Wang GX (2010) Mn3O4 nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors. Electrochim Acta 55:6812–6817CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Xu J, Zheng Y, Zhang Y, Hu X, Xu T (2017) Construction of CuCo2O4@CuCo2O4 hierarchical nanowire arrays grown on Ni foam for high performance supercapacitors. RSC Adv 7:3983–3991CrossRefGoogle Scholar
  30. 30.
    Wang Y, Shi Z-Q, Huang Y, Ma Y-F, Wang C-Y, Chen M-M, Chen Y-S (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107CrossRefGoogle Scholar
  31. 31.
    Yang H, Kannappan S, Pandian AS, Jang JH, Lee YS, Lu W (2017) Graphene supercapacitor with both high power and energy density. Nanotechnology 28:445401CrossRefGoogle Scholar
  32. 32.
    Jin WH, Cao GT, Sun JY (2008) Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. J Power Sources 175:686–691CrossRefGoogle Scholar
  33. 33.
    Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A Mater Sci Process 82:599–606CrossRefGoogle Scholar
  34. 34.
    Gund GS, Dubal DP, Chodankar NR, Cho JY, Gomez-Romero P, Park C, Lokhande CD (2015) Low-cost flexible supercapacitors with high-energy density based on banostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci Rep 5:12454CrossRefGoogle Scholar
  35. 35.
    Guan C, Liu JL, Wang YD, Mao L, Fan ZX, Shen ZX, Zhang H, Wang J (2015) Iron oxide- decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9:5198–5207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Jayashree
    • 1
  • M. Parthibavarman
    • 2
    Email author
  • S. Prabhakaran
    • 3
  1. 1.Department of PhysicsVellalar College for WomenErodeIndia
  2. 2.PG and Research Department of PhysicsChikkaiah Naicker CollegeErodeIndia
  3. 3.Centre for Crystal GrowthVIT UniversityVelloreIndia

Personalised recommendations