, Volume 25, Issue 7, pp 3107–3119 | Cite as

Polypyrrole-modified carbon nanotubes@manganese dioxide@sulfur composite for lithium–sulfur batteries

  • Qinghua LuEmail author
  • Qinglin Zhu
  • Weimin Guo
  • Xiaoman Li
Original Paper


Lithium–sulfur (Li–S) battery is one of the most promising next-generation energy storage devices due to its high-capacity density and low cost. However, lithium–sulfur batteries could not be widely used in a large range due to the “shuttle effect” and sulfur insulation. Herein, we proposed a novel composite cathode of carbon nanotubes@manganese dioxide@sulfur@polypyrrole (C@MnO2@S@PPy). X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM) BET analysis show that sulfur filled into the pores of C@MnO2, and PPy was successfully coated on C@MnO2@S. TG indicated that the compound contained 60 wt% active sulfur. The prepared cathode of C@MnO2@S@PPy composites shows excellent rate performance and cycle stability. At a high rate of 1C, its maximum discharge capacity reached 1218 mA h g-1 and its average capacity decreasing rate was only 0.096%/cycle when running over 500 cycles. The interaction mechanism of MnO2 with polysulfides was investigated by adsorption tests and XPS analysis. The excellent electrochemical performance might be due to a combination of adsorption or catalytic properties of MnO2 and the conductivity of carbon materials and PPy.


Polypyrrole Manganese dioxide Carbon nanotube Electrochemical performance Lithium–sulfur batteries 


Funding information

This work was supported by the Graduate Freedom Exploration Project Fund of the central south university (no. 502211850).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417. CrossRefGoogle Scholar
  2. 2.
    Bin D, Wen YP, Wang YG, Xia YY (2018) The development in aqueous lithium-ion batteries. J Energy Chem 27:1521–1535. CrossRefGoogle Scholar
  3. 3.
    Zeng P, Huang L, Zhang X, Zhang R, Wu L, Chen Y (2018) Long-life and high-areal-capacity lithium-sulfur batteries realized by a honeycomb-like N, P dual-doped carbon modified separator. Chem Eng J 349:327–337. CrossRefGoogle Scholar
  4. 4.
    Xu J, Zhang W, Fan H, Cheng F, Su D, Wang G (2018) Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 51:73–82. CrossRefGoogle Scholar
  5. 5.
    Li X, Sun Q, Liu J, Xiao B, Li R, Sun X (2016) Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries. J Power Sources 302:174–179CrossRefGoogle Scholar
  6. 6.
    Ma L, Chen R, Hu Y, Zhang W, Zhu G, Zhao P, Chen T, Wang C, Yan W, Wang Y, Wang L, Tie Z, Liu J, Jin Z (2018) Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth. Energy Storage Mater 14:258–266. CrossRefGoogle Scholar
  7. 7.
    Hou T-Z, Chen X, Peng H-J, Huang J-Q, Li B-Q, Zhang Q, Li B (2016) Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 12:3283–3291. CrossRefGoogle Scholar
  8. 8.
    Manthiram A, Fu Y, Su YS (2012) Challenges and prospects of Lithium–sulfur batteries. Acc Chem Res 46:1125–1134CrossRefGoogle Scholar
  9. 9.
    Yan B, Li X, Bai Z, Song X, Xiong D, Zhao M, Li D, Lu S (2017) A review of atomic layer deposition providing high performance lithium sulfur batteries. J Power Sources 338:34–48. CrossRefGoogle Scholar
  10. 10.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500–506. CrossRefGoogle Scholar
  11. 11.
    Xue M, Chen C, Ren Z, Tan Y, Li B, Zhang C (2017) A novel mangosteen peels derived hierarchical porous carbon for lithium sulfur battery. Mater Lett 209:594–597CrossRefGoogle Scholar
  12. 12.
    Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett 11:4288–4294CrossRefGoogle Scholar
  13. 13.
    Wang H, Zhang C, Chen Z, Liu HK, Guo Z (2015) Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon 81:782–787CrossRefGoogle Scholar
  14. 14.
    Huang JQ, Liu XF, Zhang Q, Chen CM, Zhao MQ, Zhang SM, Zhu W, Qian WZ, Wei F (2013) Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from −40 to 60 °C. Nano Energy 2:314–321CrossRefGoogle Scholar
  15. 15.
    Wang HF, Fan CY, Li XY, Wu XL, Li HH, Sun HZ, Xie HM, Zhang JP, Tong CY (2017) Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance. Electrochim Acta 244:86–95CrossRefGoogle Scholar
  16. 16.
    Yang J, Xie J, Zhou X, Zou Y, Tang J, Wang S, Chen F, Wang L (2014) Functionalized N-doped porous carbon nanofiber webs for a lithium–sulfur battery with high capacity and rate performance. J Phys Chem C 118:1800–1807CrossRefGoogle Scholar
  17. 17.
    Zhang PY, Sui ZY, Wang EJ, Liu YW, Han BH (2018) Preparation of hierarchically porous sulfur- and oxygen-co-doped carbon for gas uptake and lithium-ion battery. Microporous Mesoporous Mater 264Google Scholar
  18. 18.
    Guo MQ, Huang JQ, Kong XY, Peng HJ, Shui H, Qian FY, Zhu L, Zhu WC, Zhang Q (2016) Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries. New Carbon Mater 31:352–362CrossRefGoogle Scholar
  19. 19.
    Pang Q, Tang J, Huang H, Liang X, Hart C, Tam KC, Nazar LF (2015) A nitrogen and sulfur dual-doped carbon derived from Polyrhodanine@cellulose for advanced Lithium-sulfur batteries. Adv Mater 27:6021–6028CrossRefGoogle Scholar
  20. 20.
    Ma G, Wen Z, Wang Q, Chen S, Peng P, Jin J, Wu X (2015) Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. J Power Sources 273:511–516CrossRefGoogle Scholar
  21. 21.
    Gao H, Lu Q, Yao Y, Wang X, Wang F (2017) Significantly raising the cell performance of lithium sulfur battery via the multifunctional polyaniline binder. Electrochim Acta 232:414–421CrossRefGoogle Scholar
  22. 22.
    Zhang Z, Zhang Z, Li J, Lai Y (2015) Polydopamine-coated separator for high-performance lithium-sulfur batteries. J Solid State Electrochem 19:1709–1715CrossRefGoogle Scholar
  23. 23.
    Lee J, Hwang T, Lee Y, Lee JK, Choi W (2015) Coating of sulfur particles with manganese oxide nanowires as a cathode material in lithium–sulfur batteries. Mater Lett 158:132–135CrossRefGoogle Scholar
  24. 24.
    Zhi WS, Li W, Cha JJ, Zheng G, Yuan Y, Mcdowell MT, Hsu PC, Yi C (2013) Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-Sulphur batteries. Nat Commun 4:1331CrossRefGoogle Scholar
  25. 25.
    Peng DJ (2011) Preparation and electrochemical performance of S-V_2O_5 composite cathodematerials for lithium/sulfur batteries. Journal of Guilin University of TechnologyGoogle Scholar
  26. 26.
    Lei T, Chen W, Huang J, Yan C, Sun H, Wang C, Zhang W, Li Y, Xiong J (2017) Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv Energy Mater 7:1601843Google Scholar
  27. 27.
    Ghazi ZA, He X, Khattak AM, Khan NA, Liang B, Iqbal A, Wang J, Sin H, Li L, Tang Z (2017) MoS 2 /celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv Mater 29:1606817CrossRefGoogle Scholar
  28. 28.
    Ye C, Zhang L, Guo C, Li D, Vasileff A, Wang H, Qiao S-Z (2017) A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium–sulfur batteries. Adv Funct Mater 27:1702524CrossRefGoogle Scholar
  29. 29.
    Li X, Tang R, Hu K, Zhang L, Ding Z (2016) Hierarchical porous carbon aerogels with VN modification as cathode matrix for high performance Lithium - sulfur batteries. Electrochim Acta 210:734–742CrossRefGoogle Scholar
  30. 30.
    Choi J, Jeong TG, Cho BW, Jung Y, Si HO, Kim YT (2018) Tungsten carbide as a highly efficient catalyst for polysulfide fragmentations in Li–S batteries. J Phys Chem C 122:7664–7669CrossRefGoogle Scholar
  31. 31.
    Fang JH, Cao Y, Yang MP, Zheng MS, Dong QF, High-Techcoltd HG (2017) An investigation in the performance of lithium sulfur battery with a TiC coated separator. J ElectrochemGoogle Scholar
  32. 32.
    Zhang Q, Wang Y, Seh ZW, Fu Z, Zhang R, Cui Y (2015) Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett 15:3780–3786CrossRefGoogle Scholar
  33. 33.
    Zhao C, Shen C, Xin F, Sun Z, Han W (2014) Prussian blue-derived Fe2O3/sulfur composite cathode for lithium–sulfur batteries. Mater Lett 137:52–55CrossRefGoogle Scholar
  34. 34.
    Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun 6:5682. CrossRefGoogle Scholar
  35. 35.
    Liu Z, Liu B, Guo P, Shang X, Lv M, Liu D, He D (2018) Enhanced electrochemical kinetics in lithium-sulfur batteries by using carbon nanofibers/manganese dioxide composite as a bifunctional coating on sulfur cathode. Electrochim Acta 269:180–187. CrossRefGoogle Scholar
  36. 36.
    Ni L, Zhao G, Wang Y, Wu Z, Wang W, Liao Y, Yang G, Diao G (2017) Coaxial carbon/MnO2 hollow nanofibers as sulfur hosts for high-performance lithium-sulfur batteries. Chem Asian J 12:3128–3134CrossRefGoogle Scholar
  37. 37.
    Zhang J, Ye S, Yu D, Zhang W, Yu G (2016) In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium–sulfur battery. Nano Lett 16:7276–7281CrossRefGoogle Scholar
  38. 38.
    He M, Zuo P, Zhang H, Hua J, Ma Y, Du C, Cheng X, Gao Y, Yin G (2018) Polymeric multilayer-modified manganese dioxide with hollow porous structure as sulfur host for lithium sulfur batteries. Electrochim Acta 259:440–448CrossRefGoogle Scholar
  39. 39.
    Zhao G, Li J, Jiang L, Dong H, Wang X, Hu W (2012) Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem Sci 3:433–437. CrossRefGoogle Scholar
  40. 40.
    Gibson J, Holohan M, Riley HL (1946) Amorphous carbon. J Chem Soc 1:456CrossRefGoogle Scholar
  41. 41.
    Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24:1176–1181. CrossRefGoogle Scholar
  42. 42.
    Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2013) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors (vol 196, pg 5990, 2011). J Power Sources 239:561–561. CrossRefGoogle Scholar
  43. 43.
    Li L, Liu X, Zhu K, Tian J, Liu X, Yang K, Shan Z (2015) PEO-coated sulfur-carbon composite for high-performance lithium-sulfur batteries. J Solid State Electrochem 19:3373–3379. CrossRefGoogle Scholar
  44. 44.
    Li LY, Liu X, Zhu K, Tian J, Liu X, Yang K, Shan Z (2015) PEO-coated sulfur-carbon composite for high-performance lithium-sulfur batteries. J Solid State Electrochem 19:1–7CrossRefGoogle Scholar
  45. 45.
    Li Y, Ye D, Liu W, Shi B, Guo R, Zhao H, Pei H, Xu J, Xie J (2016) A MnO2/graphene oxide/multi-walled carbon nanotubes-sulfur composite with dual-efficient polysulfide adsorption for improving lithium-sulfur batteries. ACS Appl Mater Interfaces 8Google Scholar
  46. 46.
    Luo HM, Chen YZ, Mu B, Fu YJ, Zhao X, Zhang JQ (2016) Preparation and electrochemical performance of attapulgite/citric acid template carbon electrode materials. J Appl Electrochem 46:299–307CrossRefGoogle Scholar
  47. 47.
    Zhao X, Ahn HJ, Kim KW, Cho KK, Ahn JH (2015) Polyaniline-coated mesoporous carbon/sulfur composites for advanced lithium sulfur batteries. J Phys Chem C 39:7996–8003CrossRefGoogle Scholar
  48. 48.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguezreinoso F, Rouquerol J, Sing KSW (2016) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 38:25–25Google Scholar
  49. 49.
    Ni L, Zhao G, Yang G, Niu G, Chen M, Diao G (2017) Dual core-shell structured S@C@MnO2 nanocomposite for highly stable lithium-sulfur batteries. ACS Appl Mater Interfaces 9:34793–34803CrossRefGoogle Scholar
  50. 50.
    Xiao J, Wang H, Li X, Wang Z, Ma J, Zhao H (2015) N-doped carbon nanotubes as cathode material in Li–S batteries. J Mater Sci Mater Electron 26:1–6Google Scholar
  51. 51.
    Gao P, Xu S, Chen Z, Huang X, Bao Z, Lao C, Wu G, Mei Y (2018) Flexible and hierarchically structured sulfur composite cathode based on the carbonized textile for high-performance Li-S batteries. ACS Appl Mater Interfaces 10Google Scholar
  52. 52.
    Gao P, Xu S, Chen Z, Huang X, Bao Z, Lao C, Wu G, Mei Y (2018) Flexible and hierarchically structured sulfur composite cathode based on the carbonized textile for high-performance Li-S batteries. ACS Appl Mater Interfaces 10:3938–3947. CrossRefGoogle Scholar
  53. 53.
    Peng H-J, Zhang G, Chen X, Zhang Z-W, Xu W-T, Huang J-Q, Zhang Q (2016) Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew Chem Int Ed 55:12990–12995CrossRefGoogle Scholar
  54. 54.
    Cañas NA, Hirose K, Pascucci B, Wagner N, Friedrich KA, Hiesgen R (2013) Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim Acta 97:42–51CrossRefGoogle Scholar
  55. 55.
    Yuan L, Qiu X, Chen L, Zhu W (2009) New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy. J Power Sources 189:127–132. CrossRefGoogle Scholar
  56. 56.
    Zhang K, Li J, Li Q, Fang J, Zhang Z, Lai Y, Tian Y (2013) Synthesis of spherical porous carbon by spray pyrolysis and its application in Li-S batteries. J Solid State Electrochem 17:3169–3175CrossRefGoogle Scholar
  57. 57.
    Yong L, Ye D, Wen L, Shi B, Rui G, Zhao H, Pei H, Xu J, Jing YX (2016) A MnO2/graphene-oxide/multi-walled carbon nanotubes-sulfur composite with dual-efficient polysulfide adsorption for improving lithium-sulfur batteries. ACS Appl Mater Interfaces 8Google Scholar
  58. 58.
    Li Y, Shi B, Liu W, Guo R, Pei H, Ye D, Xie J, Kong J (2017) Hollow polypyrrole @ MnO 2 spheres as nano-sulfur hosts for improved lithium-sulfur batteries. Electrochim ActaGoogle Scholar
  59. 59.
    Ni L, Wu Z, Zhao G, Sun C, Zhou C, Gong X, Diao G (2017) Core-shell structure and interaction mechanism of γ-MnO2 coated sulfur for improved lithium-sulfur batteries. Small 13Google Scholar
  60. 60.
    Nakayama M, Konishi S, Tagashira H, Ogura K (2005) Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium ions. Langmuir 21:354–359CrossRefGoogle Scholar
  61. 61.
    Hongfei LI, Wang X, Zhang Y, Yang X (2014) Immobilizing sulfur in high-density 3D graphene gel for high-performance lithium/sulfur battery. In: National Congress on energy storage science and technologyGoogle Scholar
  62. 62.
    Kartio IJ, Basilio CI, Yoon RH (1998) An XPS study of sphalerite activation by copper. Langmuir 14:5274–5278CrossRefGoogle Scholar
  63. 63.
    Pang Q, Kundu D, Cuisinier M, Nazar LF (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun 5:4759CrossRefGoogle Scholar
  64. 64.
    Allison DA, Johansson G, Allan CJ, Gelius U, Siegbahn H, Allison J, Siegbahn K (2007) Molecular spectroscopy by means of ESCA : V. Boron compounds. J Electron Spectrosc Relat Phenom 1:269–283CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qinghua Lu
    • 1
    Email author
  • Qinglin Zhu
    • 1
  • Weimin Guo
    • 1
  • Xiaoman Li
    • 1
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina

Personalised recommendations