Advertisement

Ionics

pp 1–12 | Cite as

Effect of ionic substitutions on the physicochemical, morphological, and electrochemical properties of lithium-rich vanadium phosphate and pyrophosphate compounds

  • Ahmed Abdel-Aziz
  • Atef Y. Shenouda
  • M. M. S. SanadEmail author
  • Brij Kishore
  • H. F. Y. Khalil
  • M. M. B. El-Sabbah
Original Paper
  • 71 Downloads

Abstract

The new Na/Cr-bisubstituted lithium vanadium monodiphosphate compound (LNVCPP) Li9-xNaxV2.8Cr0.2(P2O7)3(PO4)2, where x = 0.0, 0.5, 1.0, 1.5, and 2.0 have been prepared via simple sol–gel combustion route. The as-prepared materials are characterized by XRD, FESEM, and EDX. The XRD data indicate the presence of single phase of Li9-xNaxV2.8Cr0.2 (P2O7)3(PO4)2 (x = 0.0–2.0) with trigonal structure. Both cycle performance and rate capability have shown improvement with moderate Na-doping content. Cell of Li8.5Na0.5V2.8Cr0.2(P2O7)3(PO4)2 cathode delivers a specific discharge capacity of 53 mAhg−1 after 35 cycles in comparison with the other samples. The optimum ratio Li8.5Na0.5VCPP coated with carbon delivers a specific discharge capacity of about 75 mAhg−1 after 25 cycles. Therefore, it presents the good electrochemical rate and cyclic stability. The enhancement of the rate and cyclic capability may be attributed to the optimizing particle size, morphologies, and structural stability with the proper amount of Na-doping (x = 0.5) in Li sites.

Keywords

Ionic substitution Sol–gel synthesis Lithium-ion battery High-voltage cathode 

Notes

Funding information

The authors in CMRDI would like to thank the Academy of Scientific Research and Technology in Egypt for the funding of this research.

References

  1. 1.
    Salunkhe RR, Tang J, Kobayashi N, Kim J, Ide Y, Tominaka S, Kim JH, Yamauchi Y (2016) Ultrahigh performance supercapacitors utilizing core–shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer. Chem Sci 7(9):5704–5713.  https://doi.org/10.1039/C6SC01429A CrossRefGoogle Scholar
  2. 2.
    Salunkhe RR, Lee Y-h, Chang K-h, Li J-m, Simon P, Tang J, Torad NL, Hu C-C, Yamauchi Y (2014) Nanoarchitectured Graphene-Based Supercapacitors for Next-Generation Energy-Storage Applications. Chem Eur J 20(43):13838–13852.  https://doi.org/10.1002/chem.201403649 CrossRefGoogle Scholar
  3. 3.
    Tang J, Yamauchi Y (2016) MOF morphologies in control. Nat Chem 8(7):638–639.  https://doi.org/10.1038/nchem.2548 CrossRefGoogle Scholar
  4. 4.
    Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal–Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano 11(6):5293–5308.  https://doi.org/10.1021/acsnano.7b02796 CrossRefGoogle Scholar
  5. 5.
    Young C, Wang J, Kim J, Sugahara Y, Henzie J, Yamauchi Y (2018) Controlled Chemical Vapor Deposition for Synthesis of Nanowire Arrays of Metal–Organic Frameworks and Their Thermal Conversion to Carbon/Metal Oxide Hybrid Materials. Chem Mater 30(10):3379–3386.  https://doi.org/10.1021/acs.chemmater.8b00836 CrossRefGoogle Scholar
  6. 6.
    Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N, Yamauchi Y (2016) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52(26):4764–4767.  https://doi.org/10.1039/C6CC00413J CrossRefGoogle Scholar
  7. 7.
    Choi N-S, Chen Z, Freunberger SA, Ji X, Sun Y-K, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angew Chem Int Ed 51(40):9994–10024.  https://doi.org/10.1002/anie.201201429 CrossRefGoogle Scholar
  8. 8.
    Zheng J-c, Yang Z, Wang P-b, Tang L-b, An C-s, He Z-j (2018) Multiple Linkage Modification of Lithium-Rich Layered Oxide Li1.2 Mn0.54Ni0.13Co0.13O2 for Lithium Ion Battery. ACS Appl Mater Interfaces 10(37):31324–31329.  https://doi.org/10.1021/acsami.8b09256 CrossRefGoogle Scholar
  9. 9.
    Zheng J-c, Han Y-d, Sun D, Zhang B, Cairns EJ (2017) In situ-formed LiVOPO4@V2O5 core-shell nanospheres as a cathode material for lithium-ion cells. Energy Storage Mater 7:48–55.  https://doi.org/10.1016/j.ensm.2016.12.003 CrossRefGoogle Scholar
  10. 10.
    Zheng J-c, Yang Z, He Z-j, Tong H, Yu W-j, Zhang J-f (2018) In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy 53:613–621.  https://doi.org/10.1016/j.nanoen.2018.09.014 CrossRefGoogle Scholar
  11. 11.
    Zheng J-c, Yang B, Wang X, Zhang B, Tong H, Yu W, Zhang J (2018) Comparative Investigation of Na2FeP2O7 Sodium Insertion Material Synthesized by Using Different Sodium Sources. ACS Sustain Chem Eng 6(4):4966–4972.  https://doi.org/10.1021/acssuschemeng.7b04516 CrossRefGoogle Scholar
  12. 12.
    Masquelier C, Croguennec L (2013) Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chem Rev 113(8):6552–6591.  https://doi.org/10.1021/cr3001862 CrossRefGoogle Scholar
  13. 13.
    Kim MG, Cho J (2009) Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries. Adv Funct Mater 19(10):1497–1514.  https://doi.org/10.1002/adfm.200801095 CrossRefGoogle Scholar
  14. 14.
    Fu L, Liu H, Li C, Wu Y, Rahm E, Holze R, Wu H (2005) Electrode materials for lithium secondary batteries prepared by sol–gel methods. Prog Mater Sci 50(7):881–928.  https://doi.org/10.1016/j.pmatsci.2005.04.002 CrossRefGoogle Scholar
  15. 15.
    Padhi AK (1997) Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation. J Electrochem Soc 144(8):2581–2581.  https://doi.org/10.1149/1.1837868 CrossRefGoogle Scholar
  16. 16.
    Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) Electrochemical Property: Structure Relationships in Monoclinic Li 3-yV2(PO4)3. J Am Chem Soc 125(34):10402–10411.  https://doi.org/10.1021/ja034565h CrossRefGoogle Scholar
  17. 17.
    Whittingham MS, Song Y, Lutta S, Zavalij PY, Chernova NA (2005) Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J Mater Chem 15(33):3362–3362.  https://doi.org/10.1039/b501961c CrossRefGoogle Scholar
  18. 18.
    Hautier G, Jain A, Mueller T, Moore C, Ong SP, Ceder G (2013) Designing Multielectron Lithium-Ion Phosphate Cathodes by Mixing Transition Metals. Chem Mater 25(10):2064–2074.  https://doi.org/10.1021/cm400199j CrossRefGoogle Scholar
  19. 19.
    Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. J Power Sources 258:19–38.  https://doi.org/10.1016/j.jpowsour.2014.01.126 CrossRefGoogle Scholar
  20. 20.
    Balasubramanian P, Mancini M, Axmann P, Wohlfahrt-Mehrens M (2017) Facile Synthesis and Electrochemical Investigation of Li9V3(P2O7)3(PO4)2 as High Voltage Cathode for Li-Ion Batteries. J Electrochem Soc 164(1):A6047–A6053.  https://doi.org/10.1149/2.0071701jes CrossRefGoogle Scholar
  21. 21.
    Kuang Q, Xu J, Zhao Y, Chen X, Chen L (2011) Layered monodiphosphate Li9V3(P2O 7)3(PO4)2: A novel cathode material for lithium-ion batteries. Electrochim Acta 56(5):2201–2205.  https://doi.org/10.1016/j.electacta.2010.11.051 CrossRefGoogle Scholar
  22. 22.
    Kuang Q, Zhao Y, Xu J (2011) Synthesis, Structure, Electronic, Ionic, and Magnetic Properties of Li9V3(P2O7)3(PO4)2 Cathode Material for Li-Ion Batteries. J Phys Chem C 115(16):8422–8429.  https://doi.org/10.1021/jp200961b CrossRefGoogle Scholar
  23. 23.
    Liang Z, Zhao Y (2013) Preparation and electrochemical study of Mn-doped Li9V3(P2O7)3(PO4)2 cathode material for lithium ion batteries. Electrochim Acta 94:374–380.  https://doi.org/10.1016/j.electacta.2012.12.054 CrossRefGoogle Scholar
  24. 24.
    Xu J, Zhao Y, Kuang Q, Dong Y (2011) Preparation and electrochemical properties of Cr-doped Li9V3(P2O7)3(PO4)2 as cathode materials for lithium-ion batteries. Electrochim Acta 56(18):6562–6567.  https://doi.org/10.1016/j.electacta.2011.02.093 CrossRefGoogle Scholar
  25. 25.
    Kalaiselvi N, Doh C-H, Park C-W, Moon S-I, Yun M-S (2004) A novel approach to exploit LiFePO4 compound as an ambient temperature high capacity anode material for rechargeable lithium batteries. Electrochem Commun 6(11):1110–1113.  https://doi.org/10.1016/j.elecom.2004.08.014 CrossRefGoogle Scholar
  26. 26.
    Rui XH, Yesibolati N, Chen CH (2011) Li3V2(PO4)3/C composite as an intercalation-type anode material for lithium-ion batteries. J Power Sources 196(4):2279–2282.  https://doi.org/10.1016/j.jpowsour.2010.09.024 CrossRefGoogle Scholar
  27. 27.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767.  https://doi.org/10.1107/S0567739476001551 CrossRefGoogle Scholar
  28. 28.
    Atef Y, Shenouda HKL (2008) Electrochemical behavior of tin borophosphate anode electrodes for energy storage systems. J Power Sources 185:1386–1391CrossRefGoogle Scholar
  29. 29.
    Kuang Q, Zhao Y, Dong Y, Fan Q, Lin X, Liu X (2016) A comparative study of Li8NaV3(P2O7)3(PO4)2 and Li9V3(P2O7)3(PO4)2: Synthesis, structure and electrochemical properties. J Power Sources 306:337–346.  https://doi.org/10.1016/j.jpowsour.2015.12.011 CrossRefGoogle Scholar
  30. 30.
    Shenouda AY, Liu HK (2009) Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J Alloys Compd 477(1-2):498–503.  https://doi.org/10.1016/j.jallcom.2008.10.077 CrossRefGoogle Scholar
  31. 31.
    Shenouda AY, Liu HK (2010) Preparation, Characterization, and Electrochemical Performance of Li2CuSnO4 and Li2CuSnSiO6 Electrodes for Lithium Batteries. J Electrochem Soc 157(11):A1183–A1183.  https://doi.org/10.1149/1.3479425 CrossRefGoogle Scholar
  32. 32.
    Satish R, Aravindan V, Ling WC, Madhavi S (2015) Carbon-coated Li3V2(PO4)3 as insertion type electrode for lithium-ion hybrid electrochemical capacitors: An evaluation of anode and cathodic performance. J Power Sources 281:310–317.  https://doi.org/10.1016/j.jpowsour.2015.01.190 CrossRefGoogle Scholar
  33. 33.
    Shenouda AY (2006) Structure and electrochemical behavior of lithium vanadate materials for lithium batteries. Electrochim Acta 51(26):5973–5981.  https://doi.org/10.1016/j.electacta.2006.03.080 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ahmed Abdel-Aziz
    • 1
  • Atef Y. Shenouda
    • 1
  • M. M. S. Sanad
    • 1
    Email author
  • Brij Kishore
    • 2
  • H. F. Y. Khalil
    • 3
  • M. M. B. El-Sabbah
    • 3
  1. 1.Central Metallurgical R & D Institute (CMRDI), TebbinHelwanEgypt
  2. 2.Research FellowUniversity of WarwickCoventryUK
  3. 3.Chemistry Department Faculty of ScienceAl-Azhar UniversityCairoEgypt

Personalised recommendations