Advertisement

Ionics

, Volume 25, Issue 7, pp 3079–3085 | Cite as

A facile and convenient approach to fill carbon nanotubes with various nanoparticles

  • Jinxiang Diao
  • Gang Wang
  • Shenghua MaEmail author
  • Xiaojie LiuEmail author
Original Paper
  • 54 Downloads

Abstract

A facile and convenient approach was proposed to highly fill carbon nanotubes with various nanoparticles, such as Fe3O4 and CoO. Furthermore, in the case of Fe3O4 and CoO nanoparticles, the effect of reaction conditions on the filling quality and confinement of CNTs on the size and morphology of NPs were explored. The encapsulation procedure in our work can provide a valuable guidance for filling a variety of NPs into hollow structure apart from CNTs. In addition, as a proof-of-concept demonstration, the magnetic properties of Fe3O4 in the absence and presence of CNTs were measured to indicate that magnetization and the blocking temperature of superparamagnetic Fe3O4 can be adjusted, which is due to the confinement effect of CNTs.

Keywords

Carbon nanotubes Nanomaterials Magnetite Solvothermal method Magnetic property 

Notes

Funding information

We acknowledge financial support from by the financial supports of the National Natural Science Foundation of China (No. 21601144), Xi’an science and technology project-Engineering program of University and Institute talents servicing Enterprise (2017085CG/RC048(XBDX006)) and the Natural Science Foundation of Shaanxi Province (No. 2017JM2025).

Supplementary material

11581_2019_2841_MOESM1_ESM.doc (27.7 mb)
ESM 1 (DOC 28360 kb)

References

  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  2. 2.
    Kay B, Kay HA, Won KS, Young PS, Jeong MM, Dong BJ, Seong LC (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392CrossRefGoogle Scholar
  3. 3.
    Heer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180CrossRefGoogle Scholar
  4. 4.
    Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150CrossRefGoogle Scholar
  5. 5.
    Singh R, Torti SV (2013) Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 65:2045–2060CrossRefGoogle Scholar
  6. 6.
    Deng Z, Jiang H, Hu Y, Liu Y, Zhang L, Liu H, Li C (2017) 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv Mater 29:1603020CrossRefGoogle Scholar
  7. 7.
    Lim WQ, Gao Z (2016) Plasmonic nanoparticles in biomedicine. Nano Today 11(2):168–188CrossRefGoogle Scholar
  8. 8.
    Li HH, Fu QQ, Xu L, Ma SY, Zheng YR, Liu XJ, Yu SH (2017) Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis. Energy Environ Sci 10:1751–1756CrossRefGoogle Scholar
  9. 9.
    Kong C, Du H, Chen L, Chen B (2017) Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation. Energy Environ Sci 10:1812–1819CrossRefGoogle Scholar
  10. 10.
    Yu WJ, Hou PX, Zhang LL, Li F, Liu C, Cheng HM (2010) High coercivity of iron-filled carbon nanotubes synthesized on austenitic stainless steel. Chem Commun 46:8576–8578CrossRefGoogle Scholar
  11. 11.
    Camilli L, Scarselli M, Gobbo SD, Castrucci P, Lamastra FR, Nanni F, Gautron E, Lefrant S, D’Orazio F, Lucari F, Crescenzi MD (2012) High coercivity of iron-filled carbon nanotubes synthesized on austenitic stainless steel. Carbon 50:718–721CrossRefGoogle Scholar
  12. 12.
    Elías AL, Rodríguez-Manzo JA, McCartney MR, Golberg D, Zamudio A, Baltazar SE, López-Urías F, Muñoz-Sandoval E, Gu L, Tang CC, Smith DJ, Bando Y, Terrones H, Terrones D (2005) Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes. Nano Lett 5:467–472CrossRefGoogle Scholar
  13. 13.
    Wang D, Yang G, Ma Q, Wu M, Tan Y, Yoneyama Y, Tsubaki N (2012) Confinement effect of carbon nanotubes : copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate. ACS Catal 2:1958–1966CrossRefGoogle Scholar
  14. 14.
    Corio P, Santos AP, Santos PS, Temperini MLA, Brar VW, Pimenta MA, Dresselhaus MS (2004) Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem Phys Lett 383:475–480CrossRefGoogle Scholar
  15. 15.
    Ugarte D, Chatelain A, Heer WA (1996) Nanocapillarity and chemistry in carbon nanotubes. Science 274:1897–1899CrossRefGoogle Scholar
  16. 16.
    Zhang H, Song H, Chen X, Zhou J, Zhang H (2012) Preparation and electrochemical performance of SnO2@carbon nanotube core-shell structure composites as anode material for lithium-ion batteries. Electrochim Acta 59:160–167CrossRefGoogle Scholar
  17. 17.
    Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511CrossRefGoogle Scholar
  18. 18.
    Yang Z, Guo S, Pan X, Wang J, Bao X (2011) FeN nanoparticles confined in carbon nanotubes for CO hydrogenation. Energy Environ Sci 4:4500–4503CrossRefGoogle Scholar
  19. 19.
    Ding Q, Liu D, Guo D, Yang F, Pang X, Che R, Zhou N, Xie J, Sun J, Huang Z, Gu N (2017) Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials 124:35–46CrossRefGoogle Scholar
  20. 20.
    Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19:157–168CrossRefGoogle Scholar
  21. 21.
    Wu L, Wu M, Lin X, Zhang X, Liu X, Liu J (2017) Magnetite nanocluster and paclitaxel-loaded charge-switchable nanohybrids for MR imaging and chemotherapy. J Mater Chem B 5:849–857CrossRefGoogle Scholar
  22. 22.
    Tsang SC, Chen YK, Harris PJF, Green MLH (1994) A simple chemical method of opening and filling carbon nanotubes. Nature 372:159–162CrossRefGoogle Scholar
  23. 23.
    Yu WJ, Hou PX, Li F, Liu C (2012) Improved electrochemical performance of Fe2O3 nanoparticles confined in carbon nanotubes. J Mater Chem 22:13756–13763CrossRefGoogle Scholar
  24. 24.
    Costa PPMFJ, Sloan J, Rutherford T, Green MLH (2005) Encapsulation of RexOy clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal. Chem Mater 17:6579–6582CrossRefGoogle Scholar
  25. 25.
    Dujardin BE, Ebbesen TW, Krishnan K, Treacy MMJ (1998) Wetting of single shell carbon nanotubes. Adv Mater 10:1472–1475CrossRefGoogle Scholar
  26. 26.
    Ebbesen W (1996) Wetting, filling and decorating carbon nanotubes. J Phys Chem Solids 57:951–955CrossRefGoogle Scholar
  27. 27.
    Seo WS, Shim JH, Oh SJ, Lee EK, Hur NH, Park JT (2005) Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals. J Am Chem Soc 127:6188–6189CrossRefGoogle Scholar
  28. 28.
    An K, Lee N, Park J, Kim SC, Wang H, Park JG, Kim JY, Park JH, Han MJ, Yu J, Hyeon T (2006) Synthesis, characterization, and self-assembly of pencil-shaped CoO nanorods. J Am Chem Soc 128:9753–9760CrossRefGoogle Scholar
  29. 29.
    Chen S, Wu G, Sha M, Huang S (2007) Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J Am Chem Soc 129:2416–2417CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials ScienceNorthwest UniversityXi’anPeople’s Republic of China
  2. 2.Aeronautical Polytechnic InstituteXi’anPeople’s Republic of China
  3. 3.National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials & Application International Cooperation Base, Institute of Photonics & Photon-TechnologyNorthwest UniversityXi’anPeople’s Republic of China

Personalised recommendations