, Volume 25, Issue 7, pp 3331–3339 | Cite as

Nanostructure NiCo2S4 with different morphologies grown on Ni foam for high-performance supercapacitors

  • Xuechun Xiao
  • Enshan HanEmail author
  • Zhenzhen Zeng
  • Lingzhi Zhu
  • Ling Li
  • Zheng Liu
Original Paper


Cobalt–nickel sulfide (NiCo2S4) was directly grown on nickel foam by a facile hydrothermal method. The effect of four different sulfur sources, the composite step and RGO density on the morphology and electrochemical performance of NiCo2S4 electrode for supercapacitor were investigated in detail. The results exhibited that under the same conditions, using the thioacetamide as the sulfur source, the electrochemical properties of the electrode material was the best, which combined with 0.1 g/L RGO in the second step of hydrothermal. It showed the highest capacity and longest cycling life, demonstrating a specific capacitance of 1733 F/g at a charge–discharge current density of 1 A/g and 87% capacitor retention rate after 5000 cycles.


Cobalt–nickel sulfide Sulfur source Graphene oxide Supercapacitor 



  1. 1.
    Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications[J]. Energy Environ Sci 7(7):2160–2181CrossRefGoogle Scholar
  2. 2.
    Zhai Y, Dou Y, Zhao D et al (2015) ChemInform abstract: carbon materials for chemical capacitive energy storage[J]. Cheminform 43(2):4828–4850Google Scholar
  3. 3.
    Jiang H, Lee PS, Li C (2012) 3D carbon based nanostructures for advanced supercapacitors[J]. Energy Environ Sci 6(1):41–53CrossRefGoogle Scholar
  4. 4.
    Jiao Y, Liu Y, Yin B, Zhang S, Qu F, Wu X (2014) Hybrid α-Fe 2O 3 @NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts[J]. Nano Energy 10:90–98CrossRefGoogle Scholar
  5. 5.
    Ma H, He J, Xiong DB et al (2016) Nickel cobalt hydroxides @reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability.[J]. ACS Appl Mater Interfaces 8(3):1992CrossRefGoogle Scholar
  6. 6.
    Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications[J]. ACS Appl Mater Interfaces 6(3):2174–2184CrossRefGoogle Scholar
  7. 7.
    Mahmood N, Tahir M, Mahmood A, Zhu J, Cao C, Hou Y (2015) Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density[J]. Nano Energy 11:267–276CrossRefGoogle Scholar
  8. 8.
    Wu D, Xiao T, Tan X, Xiang P, Jiang L, Kang Z, Tan P (2016) High-performance asymmetric supercapacitors based on cobalt chloride carbonate hydroxide nanowire arrays and activated carbon[J]. Electrochim Acta 198:1–9CrossRefGoogle Scholar
  9. 9.
    Wen J, Li S, Zhou K, Song Z, Li B, Chen Z, Chen T, Guo Y, Fang G (2016) Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni 3 S 2, nanorod array and pen ink electrodes[J]. J Power Sources 324:325–333CrossRefGoogle Scholar
  10. 10.
    Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors[J]. Nanoscale 5(19):8879–8883CrossRefGoogle Scholar
  11. 11.
    Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors.[J]. Nano Lett 14(2):831–838CrossRefGoogle Scholar
  12. 12.
    Hu L, Choi JW, Yang Y, Jeong S, la Mantia F, Cui LF, Cui Y (2009) From the cover: highly conductive paper for energy-storage devices[J]. Proc Natl Acad Sci U S A 106(51):21490CrossRefGoogle Scholar
  13. 13.
    Liu X, Wu Z (2017) Hierarchitectures of mesoporous flowerlike NiCo2S4, with excellent pseudocapacitive properties[J]. Mater Lett 187:24–27CrossRefGoogle Scholar
  14. 14.
    Yang J, Guo W, Li D, Qin Q, Zhang J, Wei C, Fan H, Wu L, Zheng W (2014) Hierarchical porous NiCo2S4 hexagonal plates: formation via chemical conversion and application in high performance supercapacitors[J]. Electrochim Acta 144(144):16–21CrossRefGoogle Scholar
  15. 15.
    Zhu Y, Ji X, Wu Z, Liu Y (2015) NiCo 2 S 4, hollow microsphere decorated by acetylene black for high-performance asymmetric supercapacitor[J]. Electrochim Acta 186:562–571CrossRefGoogle Scholar
  16. 16.
    Wen Y, Peng S, Wang Z, Hao J, Qin T, Lu S, Zhang J, He D, Fan X, Cao G (2017) Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors[J]. J Mater Chem A 5(15):7144–7152CrossRefGoogle Scholar
  17. 17.
    Tang Y, Chen T, Yu S, Qiao Y, Mu S, Zhang S, Zhao Y, Hou L, Huang W, Gao F (2015) A highly electronic conductive cobalt nickel sulphide dendrite/quasi-spherical nanocomposite for a supercapacitor electrode with ultrahigh areal specific capacitance[J]. J Power Sources 295:314–322CrossRefGoogle Scholar
  18. 18.
    Yu JF, Lin LY (2016) Structure variation of nickel cobalt sulfides using Ni foam and nickel salt as the nickel source and the application on the supercapacitor electrode[J]. J Energy Storage 7:295–304CrossRefGoogle Scholar
  19. 19.
    Yang Z, Zhu X, Wang K, Ma G, Cheng H, Xu F (2015) Preparation of NiCo2S4, flaky arrays on Ni foam as binder-free supercapacitor electrode[J]. Appl Surf Sci 347:690–695CrossRefGoogle Scholar
  20. 20.
    Xiong X, Waller G, Ding D, Chen D, Rainwater B, Zhao B, Wang Z, Liu M (2015) Controlled synthesis of NiCo 2 S 4, nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors[J]. Nano Energy 16:71–80CrossRefGoogle Scholar
  21. 21.
    Li Z, Qu Y, Wang M, Hu Y, Han J, Fan L, Guo R (2016) O/W interface-assisted hydrothermal synthesis of NiCo 2 S 4, hollow spheres for high-performance supercapacitors[J]. Colloid Polym Sci 294(8):1325–1332CrossRefGoogle Scholar
  22. 22.
    Qi J, Chang Y, Sui Y et al (2017) Facile synthesis of ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor[J]. Adv Mater Interfaces 5(3):1700985CrossRefGoogle Scholar
  23. 23.
    Chang Y, Sui Y, Qi J, Jiang L, He Y, Wei F, Meng Q, Jin Y (2017) Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance super-capacitor electrode materials[J]. Electrochim Acta 226:69–78CrossRefGoogle Scholar
  24. 24.
    Zhao C, Zhang Y, Qian X et al (2017) MoS2/RGO/Ni3S2 nanocomposite in-situ grown on Ni foam substrate and its high electrochemical performance. Electrochim Acta 198:135–143CrossRefGoogle Scholar
  25. 25.
    Rao SS, Durga IK, Kundakarla N, Punnoose D, Gopi CVVM, Reddy AE, Jagadeesh M, Kim HJ (2017) A hydrothermal reaction combined with a post anion-exchange reaction of hierarchically nanostructured NiCo2S4 for high-performance QDSSCs and supercapacitors[J]. New J Chem 41(18):10037–10047CrossRefGoogle Scholar
  26. 26.
    Hu L, Yan N, Chen Q et al (2012) Fabrication based on the Kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage[J]. Chemistry 18(29)8971–8977Google Scholar
  27. 27.
    Wang Z, Pan L, Hu H, Zhao S (2010) Co9S8 nanotubes synthesized on the basis of nanoscale Kirkendall effect and their magnetic and electrochemical properties[J]. Crystengcomm 12(6):1899–1904CrossRefGoogle Scholar
  28. 28.
    Fan HJ, Gosele U, Zacharias M (2009) ChemInform abstract: formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review[J]. Small 40(12):1660–1671Google Scholar
  29. 29.
    Salunkhe RR, Jang K, Yu H, Yu S, Ganesh T, Han SH, Ahn H (2011) Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications[J]. J Alloys Compd 509(23):6677–6682CrossRefGoogle Scholar
  30. 30.
    Tie J, Peng S, Diao G et al (2018) Shape-controlled synthesis of nickel–cobalt–sulfide with enhanced electrochemical activity [J]. J Mater Sci Mater Electron 29(3):1–8CrossRefGoogle Scholar
  31. 31.
    Wang J-G, Yang Y, Huang Z-H, Kang F (2011) Coaxial carbon nanofibers/MnO2 nano-composites as free standing electrodes for high-performance electrochemical capacitors. Electrochim Acta 56:9240–9247CrossRefGoogle Scholar
  32. 32.
    Zhou M, Lu F, Shen X, Xia W, He H, Zeng X (2015) One-pot construction of three dimensional CoMoO4/Co3O4 hybrid nanostructures and their application in supercapacitors[J]. J Mater Chem A 3(42):21201–21210CrossRefGoogle Scholar
  33. 33.
    Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor[J]. ACS Nano 7(7):6237–6243CrossRefGoogle Scholar
  34. 34.
    Zhang Z, Huang X, Li H, Zhao Y, Ma T (2017) 3-D honeycomb NiCo 2 S 4, with high electrochemical performance used for supercapacitor electrodes[J]. Appl Surf Sci 400:238–244CrossRefGoogle Scholar
  35. 35.
    Lu F, Zhou M, Li W, Weng Q, Li C, Xue Y, Jiang X, Zeng X, Bando Y, Golberg D (2016) Engineering sulfur vacancies and impurities in NiCo 2 S 4, nanostructures toward optimal supercapacitive performance[J]. Nano Energy 26:313–323CrossRefGoogle Scholar
  36. 36.
    SEN P, DE A (2010) Electrochemical performances of poly (3,4-ethylenedioxythiophene)-NiFe2O4 nanocomposite as electrode for supercapacitor[J]. Electrochim Acta 55(16):4677–4684CrossRefGoogle Scholar
  37. 37.
    GHODBANE O, LOURO M, COUSTAN L et al (2013) Microstructural and morphological effects on charge storage properties in MnO2-carbon nanofibers based supercapacitors[J]. J Electrochem Soc 160(11):A2315–A2321CrossRefGoogle Scholar
  38. 38.
    Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J (2013) Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials.[J]. Appl Mater Interfaces 5(17):8790–8795CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Yang D, Weng L, Wang L (2013) Early lung cancer diagnosis by biosensors[J]. Int J Mol Sci 14(8):15479–15509CrossRefGoogle Scholar
  40. 40.
    Cai X, Shen X, Ma L, Ji Z, kong L (2015) Facile synthesis of nickel–cobalt sulfide/reduced graphene oxide hybrid with enhanced capacitive performance[J]. RSC Adv 5(72):58777–58783CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xuechun Xiao
    • 1
  • Enshan Han
    • 1
    Email author
  • Zhenzhen Zeng
    • 1
  • Lingzhi Zhu
    • 1
  • Ling Li
    • 1
  • Zheng Liu
    • 1
  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations